13,120 research outputs found

    How is Gaze Influenced by Image Transformations? Dataset and Model

    Full text link
    Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time consuming and expensive. Most of current studies on human attention and saliency modeling have used high quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial network (dubbed GazeGAN). A modified UNet is proposed as the generator of the GazeGAN, which combines classic skip connections with a novel center-surround connection (CSC), in order to leverage multi level features. We also propose a histogram loss based on Alternative Chi Square Distance (ACS HistLoss) to refine the saliency map in terms of luminance distribution. Extensive experiments and comparisons over 3 datasets indicate that GazeGAN achieves the best performance in terms of popular saliency evaluation metrics, and is more robust to various perturbations. Our code and data are available at: https://github.com/CZHQuality/Sal-CFS-GAN

    WAYLA - Generating Images from Eye Movements

    Full text link
    We present a method for reconstructing images viewed by observers based only on their eye movements. By exploring the relationships between gaze patterns and image stimuli, the "What Are You Looking At?" (WAYLA) system learns to synthesize photo-realistic images that are similar to the original pictures being viewed. The WAYLA approach is based on the Conditional Generative Adversarial Network (Conditional GAN) image-to-image translation technique of Isola et al. We consider two specific applications - the first, of reconstructing newspaper images from gaze heat maps, and the second, of detailed reconstruction of images containing only text. The newspaper image reconstruction process is divided into two image-to-image translation operations, the first mapping gaze heat maps into image segmentations, and the second mapping the generated segmentation into a newspaper image. We validate the performance of our approach using various evaluation metrics, along with human visual inspection. All results confirm the ability of our network to perform image generation tasks using eye tracking data

    Personalization of Saliency Estimation

    Full text link
    Most existing saliency models use low-level features or task descriptions when generating attention predictions. However, the link between observer characteristics and gaze patterns is rarely investigated. We present a novel saliency prediction technique which takes viewers' identities and personal traits into consideration when modeling human attention. Instead of only computing image salience for average observers, we consider the interpersonal variation in the viewing behaviors of observers with different personal traits and backgrounds. We present an enriched derivative of the GAN network, which is able to generate personalized saliency predictions when fed with image stimuli and specific information about the observer. Our model contains a generator which generates grayscale saliency heat maps based on the image and an observer label. The generator is paired with an adversarial discriminator which learns to distinguish generated salience from ground truth salience. The discriminator also has the observer label as an input, which contributes to the personalization ability of our approach. We evaluate the performance of our personalized salience model by comparison with a benchmark model along with other un-personalized predictions, and illustrate improvements in prediction accuracy for all tested observer groups
    • …
    corecore