2,372 research outputs found

    An Obstacle Avoidance Method of Soccer Robot Based on Evolutionary Artificial Potential Field

    Get PDF
    AbstractIn order to solve the problems that local minimum, path planning in obstacles, and optimizing global obstacle avoidance path, the paper proposed a new obstacle avoidance method. In this method, used the grid method to describe the information of obstacles environment, utilized the evolutionary artificial potential field method to optimize obstacle avoidance path. The simulation results show that the proposed method is feasible and effective

    Living IoT: A Flying Wireless Platform on Live Insects

    Full text link
    Sensor networks with devices capable of moving could enable applications ranging from precision irrigation to environmental sensing. Using mechanical drones to move sensors, however, severely limits operation time since flight time is limited by the energy density of current battery technology. We explore an alternative, biology-based solution: integrate sensing, computing and communication functionalities onto live flying insects to create a mobile IoT platform. Such an approach takes advantage of these tiny, highly efficient biological insects which are ubiquitous in many outdoor ecosystems, to essentially provide mobility for free. Doing so however requires addressing key technical challenges of power, size, weight and self-localization in order for the insects to perform location-dependent sensing operations as they carry our IoT payload through the environment. We develop and deploy our platform on bumblebees which includes backscatter communication, low-power self-localization hardware, sensors, and a power source. We show that our platform is capable of sensing, backscattering data at 1 kbps when the insects are back at the hive, and localizing itself up to distances of 80 m from the access points, all within a total weight budget of 102 mg.Comment: Co-primary authors: Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang, In Proceedings of Mobicom. ACM, New York, NY, USA, 15 pages, 201

    Effective Task Transfer Through Indirect Encoding

    Get PDF
    An important goal for machine learning is to transfer knowledge between tasks. For example, learning to play RoboCup Keepaway should contribute to learning the full game of RoboCup soccer. Often approaches to task transfer focus on transforming the original representation to fit the new task. Such representational transformations are necessary because the target task often requires new state information that was not included in the original representation. In RoboCup Keepaway, changing from the 3 vs. 2 variant of the task to 4 vs. 3 adds state information for each of the new players. In contrast, this dissertation explores the idea that transfer is most effective if the representation is designed to be the same even across different tasks. To this end, (1) the bird’s eye view (BEV) representation is introduced, which can represent different tasks on the same two-dimensional map. Because the BEV represents state information associated with positions instead of objects, it can be scaled to more objects without manipulation. In this way, both the 3 vs. 2 and 4 vs. 3 Keepaway tasks can be represented on the same BEV, which is (2) demonstrated in this dissertation. Yet a challenge for such representation is that a raw two-dimensional map is highdimensional and unstructured. This dissertation demonstrates how this problem is addressed naturally by the Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach. HyperNEAT evolves an indirect encoding, which compresses the representation by exploiting its geometry. The dissertation then explores further exploiting the power of such encoding, beginning by (3) enhancing the configuration of the BEV with a focus on iii modularity. The need for further nonlinearity is then (4) investigated through the addition of hidden nodes. Furthermore, (5) the size of the BEV can be manipulated because it is indirectly encoded. Thus the resolution of the BEV, which is dictated by its size, is increased in precision and culminates in a HyperNEAT extension that is expressed at effectively infinite resolution. Additionally, scaling to higher resolutions through gradually increasing the size of the BEV is explored. Finally, (6) the ambitious problem of scaling from the Keepaway task to the Half-field Offense task is investigated with the BEV. Overall, this dissertation demonstrates that advanced representations in conjunction with indirect encoding can contribute to scaling learning techniques to more challenging tasks, such as the Half-field Offense RoboCup soccer domain

    Evolving Static Representations for Task Transfer

    Get PDF
    An important goal for machine learning is to transfer knowledge between tasks. For example, learning to play RoboCup Keepaway should contribute to learning the full game of RoboCup soccer. Previous approaches to transfer in Keepaway have focused on transforming the original representation to fit the new task. In contrast, this paper explores the idea that transfer is most effective if the representation is designed to be the same even across different tasks. To demonstrate this point, a bird\u27s eye view (BEV) representation is introduced that can represent different tasks on the same two-dimensional map. For example, both the 3 vs. 2 and 4 vs. 3 Keepaway tasks can be represented on the same BEV. Yet the problem is that a raw two-dimensional map is high-dimensional and unstructured. This paper shows how this problem is addressed naturally by an idea from evolutionary computation called indirect encoding, which compresses the representation by exploiting its geometry. The result is that the BEV learns a Keepaway policy that transfers without further learning or manipulation. It also facilitates transferring knowledge learned in a different domain, Knight Joust, into Keepaway. Finally, the indirect encoding of the BEV means that its geometry can be changed without altering the solution. Thus static representations facilitate several kinds of transfer
    • …
    corecore