
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2010s Faculty Bibliography 

1-1-2010 

Evolving Static Representations for Task Transfer Evolving Static Representations for Task Transfer 

Phillip Verbancsics 
University of Central Florida 

Kenneth O. Stanley 
University of Central Florida 

Find similar works at: https://stars.library.ucf.edu/facultybib2010 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Verbancsics, Phillip and Stanley, Kenneth O., "Evolving Static Representations for Task Transfer" (2010). 
Faculty Bibliography 2010s. 900. 
https://stars.library.ucf.edu/facultybib2010/900 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2010
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2010
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2010/900?utm_source=stars.library.ucf.edu%2Ffacultybib2010%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


Journal of Machine Learning Research 11 (2010) 1737-1769 Submitted 6/09; Revised 3/10; Published 5/10

Evolving Static Representations for Task Transfer

Phillip Verbancsics VERB@EECS.UCF.EDU

Kenneth O. Stanley KSTANLEY@EECS.UCF.EDU

School of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL 32816, USA

Editor: Michael Littman

Keywords: transfer learning, task transfer, evolutionary computation, neuroevolution, indirect
encoding

Abstract

An important goal for machine learning is to transfer knowledge between tasks. For example, learn-
ing to play RoboCup Keepaway should contribute to learning the full game of RoboCup soccer.
Previous approaches to transfer in Keepaway have focused ontransforming the original represen-
tation to fit the new task. In contrast, this paper explores the idea that transfer is most effective if
the representation is designed to be thesameeven across different tasks. To demonstrate this point,
a bird’s eye view(BEV) representation is introduced that can represent different tasks on the same
two-dimensional map. For example, both the 3 vs. 2 and 4 vs. 3 Keepaway tasks can be represented
on the same BEV. Yet the problem is that a raw two-dimensionalmap is high-dimensional and un-
structured. This paper shows how this problem is addressed naturally by an idea from evolutionary
computation calledindirect encoding, which compresses the representation by exploiting its geom-
etry. The result is that the BEV learns a Keepaway policy thattransferswithout further learningor
manipulation. It also facilitates transferring knowledgelearned in a different domain, Knight Joust,
into Keepaway. Finally, the indirect encoding of the BEV means that its geometry can be changed
without altering the solution. Thus static representations facilitate several kinds of transfer.

1. Introduction

Representation is a critical factor in the ability of any algorithm to learn autonomously (Clark,
1989). For example, a soccer player might represent the world throughraw vision, distances and
angles to other objects, or qualitative features such as close and far. Different such representations
provide different perspectives to the learning algorithm. While one might beappropriate for learning
physical control, another might better suit strategic planning. This paper focuses in particular on the
effect of representation ontask transfer, that is, bootstrapping knowledge gained learning one task
to facilitate learning another, related task (Caruana, 1997; Talvitie and Singh, 2007; Taylor et al.,
2007a). It turns out that representation not only affects the performance of such transfer, but also
the elegance of its implementation. For example, transferring an artificial neural network (ANN)
that takes as inputs parameters associated with objects (e.g., location, size, etc.) to a task with
more such objects may require transforming the network by adding inputs forparameters associated
with each new object (Taylor et al., 2007a). Yet such transformation candisrupt previous learning,
thereby requiring the transformed network to undergo additional training toregain even its former

c©2010 Phillip Verbancsics and Kenneth O. Stanley.



VERBANCSICS ANDSTANLEY

capabilities within the new scenario. As an alternative, this paper argues that an ideal representation
would require no such transformations (i.e., it would remain static) when transferring to a new task.

The idea that input (i.e., state) representation might remain static during transfer is plausible
because the raw inputs to biological organisms, for example, vision, remain the same even when
new tasks are confronted. For example, when a child graduates from playing Keepaway to full-
blown soccer, the number of photoreceptors in the eye do not change. The main idea in this paper
is that such static representation, when possible, facilitates transfer by ensuring that the semantics
of the representation are preserved even when the task changes.

To demonstrate the critical role of static representation in transfer, a novelstate representation
is introduced called abird’s eye view(BEV), which is a two-dimensional depiction of objects on the
ground from above. Conceptually, the BEV is a metaphor for an internal representation of the state
of the world from above. The BEV places objects into the context of the world geometry, allowing
geometric relationships to be more easily learned. Another advantage is that itsinput dimensionality
(i.e., number of inputs) is constant no matter how many objects are on the field. That way, even if the
task is transferred to a version with more objects, the representation remainsthe same (i.e., static),
significantly simplifying task transfer.

However, the challenge for the BEV is that representing a high-resolutiontwo-dimensional
field requires many input dimensions (i.e., many parameters), similarly to an eye.An outgrowth
of evolutionary computation designed to address such high-dimensional problems isindirect en-
coding, which compresses the representation of the solution by reusing information. The particular
indirect encoding in this paper, called acompositional pattern producing network(CPPN; Stan-
ley 2007), represents artificial neural network (ANN) mappings between high-dimensional spaces
by exploitingregularities in their geometry, which is well-suited to the BEV. An evolutionary al-
gorithm called Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT; Gauci
and Stanley 2008; Stanley et al. 2009; Gauci and Stanley 2010) that is designed to evolve CPPNs is
therefore able to learn effectively from the BEV.

The HyperNEAT BEV is tested in the common RoboCup Keepaway soccer reinforcement-
learning (RL) benchmark (Stone et al., 2005). Keepaway is important because it can potentially
serve as a stepping stone to full-blown soccer in the future, which is a major current goal in machine
learning (Kalyanakrishnan et al., 2007; Kitano et al., 1997; Kok et al., 2005; Kyrylov et al., 2005;
Mackworth, 2009; Stolzenburg et al., 2006). One interesting result with the BEV is the longest
holding time in the 3 vs. 2 variant of the task yet recorded. However, more importantly, unlike
any method so far, HyperNEAT can transfer from 3 vs. 2 to 4 vs. 3 Keepaway with no change in
representation and no further learning, demonstrating the critical role staticrepresentation plays in
learning and transfer. Furthermore, these transferred policies can then be further trained on the new
task without the need to alter the representation. Additional types of transfer within Keepaway are
investigated wherein therepresentationof the policy (i.e., the CPPN, or indirect encoding) remains
static while the BEV itself is changed by increasing resolution and by accommodating different
field sizes. Finally, cross-domain transfer is demonstrated by training on a distinctly different do-
main, Knight Joust (Taylor et al., 2007a), which is a simple predator-preytype domain, and then
transferring to 3 vs. 2 Keepaway.

The main result is that transfer through a static representation is consistentlymore robust and
often provides immediate benefits even without any further training. While staticrepresentations
are inherently high-dimensional because they must encompass many tasks,indirect encodings like
HyperNEAT’s CPPNs show that high-dimensionality need not be prohibitive. Thus, while machine

1738



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

learning often focuses on the learningalgorithm, the hope is that this paper provokes a fruitful
conversation on the role ofrepresentationin transfer and learning in general.

It is finally important to acknowledge that the extent to which maintaining a static representation
is realistic depends upon the learning method, state information, and differences between domains.
Thus static representation is an ideal that when met can provide an advantage, as shown in this
paper.

The next section describes the importance of representation in learning, prior research in transfer
learning, and the methods that underlie the BEV representation. Section 3 explains how the BEV
is configured, how information is represented in the BEV, and how HyperNEAT trains the BEV. In
Section 4, the experiments that investigate the performance of the BEV in learning and transfer are
described. Finally, Section 5 presents the results of the BEV, followed by adiscussion in Section 6.

2. Background

This section examines the critical role of representation in RL and then explains the geometry-based
methods that underlie the static representation investigated in this paper, and their relation to task
transfer.

2.1 Representation in Learning

A convenient model for problems in RL is theMarkov decision process(MDP). In the MDP, the
learner knows its environment through a state observations∈ S, which is characterized by a set of
state variabless= 〈p1, p2, · · · , pn〉, in which eachpi denotes a particular state parameter. By taking
an actiona∈A, the agent transitions to a new state inSthrough the transition functionT : S×A 7→S.
The reward functionR : S 7→ R determines the instantaneous reward associated with reaching each
state. Finally, the action that the agent takes from its current state is selectedby the policy function
π : S 7→ A (Puterman, 1994). For example, in the Keepaway soccer domain, the state spaceSfor the
keeper with the ball can be defined as the set of distances and angles to each other player. The set of
actionsA can be defined as a set of passes to teammates and holding the ball (Metzen et al., 2007;
Stone et al., 2001; Stone and Sutton, 2001; Stone et al., 2005). A simple policy π would be to pass
to the most open teammate when takers are close and hold the ball otherwise.

While the MDP framework provides a solid foundation for developing learningalgorithms, it
does not suggest how to select a state and actionrepresentationappropriate for both the domain and
the learning algorithm. One popular approach to state representation, for example, in the RoboCup
Keepaway soccer domain, is to express the state as distances and angles tothe other players rela-
tive to the agent with the ball (Metzen et al., 2007; Stone et al., 2001, 2005;Taylor et al., 2006).
However, this common representation is not the only one possible, which is important because repre-
sentation critically influences what is learned (Gauci and Stanley, 2008; Diuk et al., 2008; Tadepalli
et al., 2004; Tesauro, 1992).

To see the powerful effect of representation on learning, consider the common representation
in 3 vs. 2 Keepaway of 13 state parameters that are value-attributes for distance and angle relation-
ships among the players and the field. In contrast, 4 vs. 3 Keepaway, a similar task, requires an
increased number of state parameters to represent the distances and angles for the additional play-
ers. These additional parameters mean that the same representation cannot be applied to both tasks,
thereby complicating the transfer of knowledge between tasks. For example, the same concept must

1739



VERBANCSICS ANDSTANLEY

be learned repeatedly when the same decisions are made separately for multiple objects, such as
whether to pass to teammates who are out of bounds.

Relational RLaddresses problems such as scaling and repetitious concepts by generalizing the
representation of information for learning algorithms to a relational form (Deroski et al., 2001).
For example, in the RoboCup Keepaway domain, instead of real-valued stateparameters, general
relationscan be defined. An example for deciding to whom to pass in 3 vs. 2 Keepaway is:

Pass(Teammate) :−Threatened(PlayerWithBall),Open(Teammate).

The relational form provides a more expressive representation that can be combined with
reinforcement-learning methods (Tadepalli et al., 2004). By focusing onthe logic of relationships,
instead of on individual parameter values, these relationships can be applied to any number of ob-
jects. Furthermore, once a relationship is learned for one set of objects,it is learned for all similar
sets of objects.

One of relational RL’s goals is to provide an easier representation for transferring knowledge.
This transfer could be across objects in the domain or across different tasks. However, the design
and definition of these relationships are dependent upon the human designer, requiring expert do-
main knowledge. Learning is dependent upon the a priori defined relations. Continuous and noisy
domains present additional challenges to designing appropriate relations (Morales, 2003). Never-
theless, relational RL highlights the importance of representation to learning.

However, while state representation is important, it is not the only type of representation that
affects learning. Also significant is the representation of the learner itself, which impacts which
types of relationships can be learned and how easily they are found. Forexample, research in
temporal difference learning can employ look-up tables or more compact representations (Sutton,
1988, 1996; Tesauro, 1992), which work by encoding regularities. An important difference between
these representations is that the look-up table contains enough parametersto store associated actions
with every state, while compact representations must encode the solution with significantly fewer
parameters than states. To guarantee convergence with alook-up table, every state must be visited an
infinite number of times (Sutton and Barto, 1998) whilecompactrepresentations need only discover
underlying regularities in the problem (Sutton, 1996; Tesauro, 1992).

Another important factor in representation is the geometry of the domain (e.g., which position
is adjacent to which and in what direction). Geometry plays a critical role in learning. For example,
if a checkers board is scrambled while the relationships among locations that have been moved
remain the same, the game would become more difficult to learn. This effect hasbeen investigated
in checkers, wherein learning based on board geometry was demonstrated to enhance performance
versus learning while blind to geometry (Gauci and Stanley, 2008, 2010).Ideally, the solution
should be a function of the domain geometry, enabling the learner to take advantage of geometric
regularities. This paper focuses further on the critical role of representing geometry, particularly in
task transfer, which is described next.

2.2 Task Transfer

Task transfer means applying knowledge learned in one task to a new, related task (Caruana, 1997;
Talvitie and Singh, 2007; Taylor et al., 2007a). It allows learning to be recycled instead of starting
anew, thereby avoiding wasted computation. Additionally, a task may be so complex that it requires
initial training on a simpler version to reduce learning time and increase performance (Caruana,

1740



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

1997; Schmidhuber and Informatik, 1994; Tadepalli, 2008; Thrun and Mitchell, 1994). Thus the
capability to transfer is becoming increasingly important as the tasks studied in RL increase in
complexity. However, transfer learning faces several challenges: First, transfer is only effective
among compatible tasks and the particular knowledge that can transfer fromone task to another must
be identified. Second, a method must be derived to actually implement the transfer of knowledge.
Finally, cases in which transfer hinders performance, ornegative transfer, must be avoided (Pan
and Yang, 2008). There are several types of transfer learning problems and a variety of methods
that exploit their characteristics. These methods include translating the knowledge learned in one
task to another task (Ramon et al., 2007; Taylor et al., 2007a), choosing the best policy for the
current task from a set of previously learned policies (Talvitie and Singh, 2007), extracting advice
from previously learned tasks (Torrey et al., 2008a,b), and learning multiple tasks at the same time
(Collobert and Weston, 2008). This section reviews several such approaches.

An intuitive approach to transfer learning is to transform the representation of knowledge learned
in one task to a suitable form for a new task and then continue learning from that point. A success-
ful method that takes this approach istransfer via inter-task mapping for policy search methods
(TVITM-PS; Taylor et al. 2007a). TVITM-PS is such a leading method for transforming the policy
learned in the source task into a policy usable in the target task. In TVITM-PS, a transfer func-
tional ρ is defined to transform the policyπ for a source task into the policy for a target task, such
thatρ(πsource) = πtarget. This functional is often hand-coded based on domain knowledge, though
learning it is possible. When there are novel state variables or actions, anincomplete mappingis
defined from the source to the target. TVITM-PS can be adapted to multiple representations. For
example, in an ANN, input or output nodes whose connections are not defined in the mapping (i.e.,
it is incomplete) are made fully connected to the existing hidden nodes with random weights. This
incomplete mapping implies that further training is needed to optimize the policies with respect to
the new state variables and actions. However, it makes it possible to begin in the target domain
from a better starting point than from scratch. TVITM-PS is a milestone in tasktransfer because it
introduces a formal approach to moving from one domain to another that defines how ambiguous
variables in the target domain should be treated. The performance of TVITM-PS is compared to
results in this paper.

Another method of transfer, which is one that is explored in this paper, is to recycle the exact
samepolicy from a source task in a later target task. The idea is that the policy canthen continue
to improve in the target task. An existing approach to recycling past policies isto maintain aset
of policies and select among them.Alternating trusting Exploration and suspicious exploitation
(AtEase; Talvitie and Singh 2007) is such a transfer method; it aims to recognize when tasks are
related and when to exploit knowledge gained from previous tasks. It exploits knowledge from pre-
vious tasks by judging when to invoke the previously gained knowledge andfrom which policies.
To facilitate this process, a set of policies previously developed by learning source tasks are first
evaluated. This evaluation estimates the performance of these previously learned source policies on
the new target task. Second, the strategies are ranked by their expectedperformance on the target
task and the source policy with the best estimated performance is chosen. Finally, the chosen best
policy is set as the current policy for the target task. It remains as the policy for the target task until
the policy’s actual performance on the task falls below expectation (i.e., the estimated performance
from the evaluation of source policies is greater than the current performance) or reaches a maxi-
mum number of iterations (allowing other policies to be explored). If the expert policy falls below
expectation, the next best policy is selected and is set as the current expert policy. This method

1741



VERBANCSICS ANDSTANLEY

allows an accurate estimate of which policy from previously learned tasks is appropriate for the cur-
rent task. In contrast to this approach, this paper focuses on how to effectively leverage knowledge
gained in asinglesource policy to continue learning in the target domain. Thus the approach inthis
paper can potentially combine with a multi-policy approach such as AtEase.

An important consideration in transfer is whether a human can understand the knowledge being
transferred among tasks. An alternative method to recycling previously learned policies directly is
to take advice from learned policies to augment decision making. This advice may take the form of
geometric knowledge, causal relationships, predictions, or any other type of information, allowing
researchers to more easily interpret the transferred knowledge.Rule extractionis one such method
that takes knowledge learned from a source domain and translates it into advice that aids a policy in
a target domain (Torrey et al., 2008b). The advice is generated as a conditional, if-then statement.
Torrey et al. (2008b) describe two methods for generating advice. Onemethod is to compose rules
by decomposing the policy learned on a source task. For example,Q-values can be examined
directly and rules can be generated based on which actions are preferred. An alternative method
for generating advice is to analyze thebehavior (instead of the policy) of an agent to generate
rules. Consider observing agents playing a game of Keepaway soccer.Through observation, it may
be apparent that a learned policy always passes the ball if opponents approach within one meter,
which may then be transformed into a rule to transfer to another task. These sets of rules have
the advantage of being understandable to humans, allowing researchersto know what knowledge is
being transferred and how it is contributing.

Interestingly, transfer learning does not always require a designatedsource and target task. In-
stead, knowledge may transfer among several tasks that are simultaneously being learned. By en-
coding the knowledge for multiple tasks within the same policy, the knowledge gained from each
individual task may combine with and complement the knowledge from other tasks. For example,
Collobert and Weston (2008) demonstrate transfer learning through multi-task training for natu-
ral language processing (NLP) with deep neural networks. There are many tasks related to NLP,
including part-of-speech tagging, chunking, named entity recognition, semantic role labeling, lan-
guage modeling, and relating words syntactically. The idea is that learning about one such task may
contribute to learning the others. By training the policies simultaneously for all these capabilities,
knowledge can be continually passed back and forth among all these tasks. In particular, Collobert
and Weston (2008) show that this method improves generalization and achieves competitive results
on the task of relating words with similar meaning.

This paper adds to our understanding of task transfer by focusing on the role ofrepresentation.
The next section reviews the NEAT method, upon which this representation-centric approach is
built.

2.3 NeuroEvolution of Augmenting Topologies (NEAT)

NEAT (Stanley and Miikkulainen, 2002, 2004) is a popular policy search method that evolves
ANNs. The main idea in this paper focuses on an extension of NEAT called HyperNEAT. Nev-
ertheless, the basic principles of NEAT still supply the foundation of the approach. Traditionally,
ANNs evolved by NEAT control agents that select actions based on their sensor inputs. It is proven
in a variety of challenging control and decision-making tasks (Aaltonen et al., 2009; Cardamone
et al., 2009; Stanley and Miikkulainen, 2002, 2004; Stanley et al., 2005; Taylor et al., 2006; White-
son, 2005; Whiteson and Whiteson, 2007). This section briefly reviews NEAT.

1742



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

NEAT is an evolutionary algorithm that starts with a population of small, simple ANNsthat
increase their complexity over generations by adding new nodes and connections through mutation.
That way, the topology of the network does not need to be known a prioriand NEAT finds a suitable
level of complexity for the task. NEAT is unlike many previous methods that evolved neural net-
works, that is,neuroevolutionmethods, which historically evolved either fixed-topology networks
(Gomez and Miikkulainen, 1999; Saravanan and Fogel, 1995), or arbitrary random-topology net-
works (Angeline et al., 1993; Gruau et al., 1996; Yao, 1999). Unlike these approaches, NEAT begins
evolution with a population of small, simple networks and increases the complexity of the network
topology intodiverse speciesover generations, leading to increasingly sophisticated behavior. A
similar process of gradually adding new genes has been confirmed in natural evolution (Martin,
1999; Watson et al., 1987) and shown to improve adaptation in a few prior evolutionary (Altenberg,
1994) and neuroevolutionary (Harvey, 1993) approaches. However, a key feature that distinguishes
NEAT from prior work in growing ANNs is its unique approach to maintaining a healthy diversity
of increasingly complex structures simultaneously, as this section reviews. Complete descriptions
of the NEAT method, including experiments confirming the contributions of its components, are
available in Stanley and Miikkulainen (2002, 2004) and Stanley et al. (2005).

The NEAT method is based on three key ideas. First, to allow network structures to increase in
complexity over generations, a method is needed to keep track of which geneis which. Otherwise, it
is not clear in later generations which individual is compatible with which in a population of diverse
structures, or how their genes should be combined to produce offspring. NEAT solves this prob-
lem by assigning a uniquehistorical markingto every new piece of network structure that appears
through a structural mutation. The historical marking is a number assigned to each gene corre-
sponding to its order of appearance over the course of evolution. The numbers are inherited during
crossover unchanged, and allow NEAT to perform crossover among diverse topologies without the
need for expensive topological analysis.

Second, NEAT divides the population into species so that individuals compete primarily within
their own niches instead of with the population at large. Because adding newstructure is often
initially disadvantageous, this separation means that unique topological innovations are protected
and therefore have the opportunity to optimize their structure without direct competition from other
niches in the population. The historical markings help NEAT determine to which species different
individuals belong.

Third, many approaches that evolve network topologies and weights beginevolution with a
population of random topologies (Gruau et al., 1996; Yao, 1999). In contrast, NEAT begins with a
uniform population of simple networks with no hidden nodes, differing only intheir initial random
weights. Because of speciation, novel topologies gradually accumulate over evolution, thereby al-
lowing diverse and complex phenotype topologies to be represented. No limitis placed on the size
to which topologies can grow. New structures are introduced incrementally as structural mutations
occur, and only those structures survive that are found to be beneficial through fitness evaluations.
In effect, then, NEAT searches for a compact, appropriate topology byincrementally adding com-
plexity to existing structure.

The important concept for the approach in this paper is that NEAT is a policysearch method
that discovers the right topology and weights of a network to maximize performance on a task. The
next section reviews the extension of NEAT called HyperNEAT that allows itto exploit geometry
through representation.

1743



VERBANCSICS ANDSTANLEY

2.4 CPPNs and HyperNEAT

The primary reason that NEAT is chosen as the main vehicle to study alternate representations is
that it is easily extended to become anindirect encoding, which means acompresseddescription of
the solution network. Such compression makes the policy search practical even if the state space is
high-dimensional. One effective approach to indirect encoding is to compute the network structure
as a function of the domain’s geometry. This section describes such an extension of NEAT, called
Hypercube-based NEAT (HyperNEAT; Gauci and Stanley 2008; Stanley et al. 2009; Gauci and
Stanley 2010), which enables the novel state representation in this paper from a bird’s eye view.
The effectiveness of the geometry-based learning in HyperNEAT has been demonstrated in multiple
domains, such as checkers (Gauci and Stanley, 2008, 2010), multi-agent predator prey (D’Ambrosio
and Stanley, 2008; D’Ambroiso and Stanley, 2010), visual discrimination (Stanley et al., 2009), and
quadruped locomotion (Clune et al., 2009). For a full HyperNEAT description, see Stanley et al.
(2009) and Gauci and Stanley (2010).

The main idea in HyperNEAT is that it is possible to learn geometric relationships inthe domain
through an indirect encoding that describes how theconnectivityof the ANN can begeneratedas
a function of the domain geometry. Unlike adirect representation, wherein every dimension in the
policy space (i.e., each connection in the ANN) is described individually, anindirect representation
can describe a pattern of parameters in the policy space without explicitly enumerating every such
parameter. That is, information is reused in such an encoding, which is a major focus in the field
of generative and developmental systemsfrom which HyperNEAT originates (Bentley and Kumar,
1999; Hornby and Pollack, 2002; Lindenmayer, 1968; Turing, 1952). Such information reuse is
what allows indirect encodings to search a compressed space. That is,HyperNEAT discovers the
regularitiesin the domain geometry and learns a policy based on them.

The indirect encoding in HyperNEAT is called acompositional pattern producing network
(CPPN; Stanley 2007), which encodes theconnectivity patternof an ANN (Gauci and Stanley,
2007, 2008; Stanley et al., 2009; Gauci and Stanley, 2010). The idea behind CPPNs is that a ge-
ometric pattern can be encoded by acomposition of functionsthat are chosen to represent several
common regularities. For example, because the Gaussian function is symmetric,when it is com-
posed with any other function, the result is a symmetric pattern. The internal structure of a CPPN
is a weighted network, similar to an ANN, that denotes which functions are composed and in what
order. The appeal of this encoding is that it can represent a pattern ofconnectivity, with regularities
such as symmetry, repetition, and repetition with variation, through a network of simple functions
(i.e., the CPPN), which means that, instead of evolving ANNs directly, NEAT can evolveCPPNs
that generate ANN connectivity patterns (Figure 1). Furthermore, the indirect encoding represents
the connectivity of the ANN regardless of its size, which allows ANNs of arbitrary dimensionality
to be represented.

Formally, CPPNs arefunctionsof geometry (i.e., locations in space) that output connectivity
patterns whose nodes are situated inn dimensions, wheren is the number of dimensions in a Carte-
sian space. For each connection between two nodes in that space, the CPPN inputs theircoordinates
and outputs their connection weight. That way, NEAT can evolve CPPNs that represent ANNs with
symmetries and regularities that are computeddirectly from the geometry of the state space. Con-
sider a CPPN that takes four inputs labeledx1, y1, x2, andy2; this point in four-dimensional space
canalsodenote the connection between the two-dimensional points(x1,y1) and(x2,y2). The output
of the CPPN for that input thereby represents the weight of that connection (Figure 1). By querying

1744



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

Figure 1: A CPPN Describes Connectivity. A grid of nodes, called the ANNsubstrate, is assigned
coordinates. (1) Every connection between layers in the substrate is queried by the CPPN
to determine its weight; the line connecting layers in the substrate represents a sample
such connection. (2) For each such query, the CPPN inputs the coordinates of the two
endpoints, which are highlighted on the input and output layers of the substrate. (3) The
weight between them is output by the CPPN. Thus, CPPNs, whose internaltopology
and connection weights are evolved by HyperNEAT, can generate regular patterns of
connections.

every pair of points in the space, the CPPN can produce an ANN, whereineach queried point is
the position of a neuron. While CPPNs are themselves networks, the distinctionin terminology
between CPPN and ANN is important for explicative purposes because in HyperNEAT, CPPNsen-
codeANNs. Because the connection weights are produced as a function of their endpoints, the final
structure is produced withknowledgeof the domain geometry, which is literally depicted geometri-
cally within the constellation of nodes. In other words, parameterspi of the state vectors actually
exist atcoordinatesin space, giving it a geometry.

To help explain how CPPNs can compactly encode regular connectivity patterns, Figure 2 shows
how a very simple CPPN encodes a symmetric network. In effect, the CPPN paints a pattern within
a four-dimensional hypercube that is interpreted as an isomorphic connectivity pattern. The example
in Figure 2 illustrates the natural connection between the function embodied by the CPPN and the
geometry of the resultant network.

Connectivity patterns produced by a CPPN in this way are calledsubstratesso that they can
be verbally distinguished from the CPPN, whose internal topology is independent of the substrate.
The experimenter defines both the location and role (i.e., hidden, input, or output) of each node
in the substrate. As a rule of thumb, nodes are placed on the substrate to reflect the geometry of
the domain (i.e., the state), which makes the setup straightforward (Gauci andStanley, 2007, 2008;
Clune et al., 2009; Stanley et al., 2009; Gauci and Stanley, 2010). This way, the connectivity of the
substrate becomes a direct function of the domain geometry, which means thatknowledge about the
problem can be injected into the search and HyperNEAT can exploit the regularities (e.g., adjacency,

1745



VERBANCSICS ANDSTANLEY

(a) ANN Substrate (b) CPPN

Figure 2: Example CPPN Describing Connections from a Single Node. An example CPPN (b) with
five inputs(x1,y1,x2,y2,bias) and one output (weight) contains a single Gaussian node
and five connections. The function produced is symmetric aboutx1 andx2 (because of the
Gaussian) and linear with respect toy2 (which directly connects to the CPPN output). For
the given fixed input node coordinate(x1 = 0,y1 = 0), the CPPN in effect produces the
function Gaussian(−x2)−y2. This pattern of weights from input node(0,0) is shown on
the substrate (a). Weight magnitudes are indicated by thickness and black lines indicate
positive values. Note that the pattern produces a set of weights that are symmetric about
thex-axis and linearly decreasing as the values ofy2 increases. In this way, the function
embodied by the CPPN encodes a geometric pattern of weights in space. HyperNEAT
evolves the topologies and weights of such CPPNs.

or symmetry, which the CPPN sees) of a problem that are invisible to traditionalencodings. For
example, one way that geometric knowledge can be imparted is by including a hidden node in the
CPPN that computes Gaussian(x2−x1), which imparts the concept of locality on thex-axis, an idea
employed in the implementation in this paper. The HyperNEAT algorithm is outlined in algorithm
1.

In summary, instead of evolving the ANN directly, HyperNEAT, through the NEAT method,
evolves the internal topology and weights of the CPPN thatencodesit, which is significantly more
compact. The next section explains how this encoding makes it possible to learn from a bird’s eye
view.

3. Approach: Bird’s Eye View

A major challenge for the state representation in RL tasks is that specific state variables are often
tied to agents or individual objects, which makes it difficult to add more such objects without ex-
panding the state space (Taylor et al., 2007a). To address this problem, this section proposes a static
representation, the bird’s eye view (BEV) perspective, which enablesscaling to higher complexity
states without the need to alter the representation. The BEV is explained first,followed by its im-
plementation, which is based on the HyperNEAT approach. Because it is relatively simple, the BEV
is chosen in this paper to exemplify the advantage of static representation in task transfer.

1746



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

Input: Substrate Configuration
Output: Solution CPPN
Initialize population of minimal CPPNs with random weights;1

while Stopping criteria is not metdo2

foreach CPPN in the populationdo3

foreach Possible connection in the substratedo4

Query the CPPN for weightw of connection;5

if Abs(w)>Thresholdthen6

Create connection with a weight scaled proportionally tow (Figure 1);7

end8

end9

Run the substrate as an ANN in the task domain to ascertain fitness;10

end11

Reproduce CPPNs according to the NEAT method to produce the next generation;12

end13

Output the Champion CPPN.14

Algorithm 1: Basic HyperNEAT Algorithm

3.1 Bird’s Eye View

Humans often visualize data from a BEV. Examples include maps for navigation, construction blue
prints, and sports play books. Key to these representations is that they remain the same (i.e., they
arestatic) no matter how many objects are represented on them. For example, a city map does
not change size or format when new buildings are constructed or new roads are created. Addition-
ally, the physical geometry of such representations allow agents to understand spatial relationships
among objects in the environment by placing them in the context of physical space. The BEV also
implicitly represents its borders by excluding space outside them from its field of view. As sug-
gested in Kuipers’ Spatial Semantic Hierarchy (SSH), suchmetricalrepresentation of the geometry
of large-scale space is a critical component of human spatial reasoning (Kuipers, 2000).

A distinctive feature of the proposed representation is that not only is the agent state represented
from a BEV, but italsorequestsactionswithin the same BEV perspective. For example, to request
a pass the agent can indicate its target by simply highlighting it on a two-dimensional output array.
That way, instead of making decisions blind to the geometry of physical space, it can be taken into
account.

Egocentric data (Figure 3a) can be mapped to an equivalent BEV by translating from local
(relative) coordinates to global coordinates established by static points ofreference (i.e., fiducials).
The global coordinates mark the location of objects in the BEV (Figure 3b). This translation allows
mapping any number of objects into the static representation of the BEV.

Importantly, the continuous coordinate system must be discretized so that each variable in the
state representation corresponds to a single discrete location. This discretization allows the two-
dimensional field to be represented with a finite set of parameters. The values of these parameters
denote objects in their respective regions.

Note that while the division of the field in Figure 3b appears reminiscent oftile coding(Sutton,
1996), that appearance is superficial because (1) a tile coding of the state variables in Figure 3a

1747



VERBANCSICS ANDSTANLEY

(a) Egocentric view (b) BEV

Figure 3: Alternative Representations of a Soccer Field. Several parameters (a) represent the
agent’s relationship with other agents on a soccer field (taken from a standard RoboCup
representation; Cheny et al. 2003). Each distance and angle pair represents a specific
relationship of the agent to another agent. The BEV (b) represents the same relationships
as paths in the geometric space. A square depicts the agent, circles depicts itsteammates,
and triangles its opponents. The overhead perspective also makes it possible to represent
any number of agents without changing the representation.

would still be egocentric whereas the BEV is not, and (2) tile coding breaks the state representation
into chunks that can be optimized separately whereas the HyperNEAT CPPNderives the connectiv-
ity of the policy network directly from the geometric relationships among the squares in Figure 3b,
as explained next.

3.2 HyperNEAT: Learning from the BEV

Geometric patterns often exhibit spatial regularities. Examples include repetition and symmetry.
Furthermore, important geometric relationships such as locality and topologicalconnectedness of-
ten critically influence informed spatial decision-making. The challenge for machine learning is that
learning is often blind to the geometry of the problem, making it difficult to exploit such relation-
ships (Gauci and Stanley, 2008, 2010). To understand the impact of learning from the true geometry
of the domain, consider a two-dimensional field converted to a traditional vector of parameters,
which removes the geometry (Figure 4). For example, consider a set of input values to an ANN
such as in to Figure 3a. Though eachdist andθ pair is critically related in such a traditional rep-
resentation, an ANN has no inherent knowledge or explicit access to this relationship. In contrast,
HyperNEAT seesthe task geometry, thereby exploiting geometric regularities and relationships,
such as locality, which the BEV naturally makes explicit.

For HyperNEAT to exploit patterns in a two-dimensional BEV (e.g., in soccer), the geometry
of the input layer of the substrate is made two-dimensional, as in Figure 5. That way, CPPNs can
compute the connectivity of the substrate as a function of that geometry. Thex andy coordinates
of each input unit (i.e., eachpi) are in the range[−1,1]. Furthermore, the output layer of the sub-
strate matches the dimensions of the BEV so that the CPPN can exploit the geometric relationship
between the input space and output space as well (Figure 5). That theoutputsare themselves a
discretized two-dimensional plane is another significant difference fromtile coding. Each coor-
dinate in this substrate represents a discretized region of the overhead view of physical space. A
four-dimensional CPPN with inputsx1,y1,x2, andy2 determines the weights between coordinates
in the two-dimensional input layer and the two-dimensional output layer, creating a pattern of con-

1748



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

Figure 4: The Importance of True Geometry. A two-dimensional field transformed into a vector of
parameters without any geometry forfeits knowledge of the geometry of the domain.

nections between regions in the physical space. To represent world state, objects and agents are
literally “drawn” onto the input substrate, which is a static size, like marking a map. The generated
network then can make decisions based on the relationships of such features in physical space and
thereby learn the significance of certain kinds of geometric relationships among objects that are not
identified a priori by the designer.

Figure 5: BEV Implemented in the Substrate. Each dimension ranges between[−1,1] and the input
and output planes of the substrate are equivalently constructed to take advantage of geo-
metric regularities between states and actions. Because CPPNs are an indirect encoding,
the high dimensionality of the weights does not affect performance. (The CPPN is the
search space.)

In this way, the BEV makes it possible to add new features (e.g., a new player) to the state
spacewithout the need to add new inputs. Instead, they can now simply be drawn onto the existing
representation with no additional apparatus. That way, task transfer to different numbers of players
is made simple through the static representation.

1749



VERBANCSICS ANDSTANLEY

Interestingly, although the BEV is naturally held static its size or resolution can be changed
without retraining. A unique feature of CPPNs (which encode the BEV connectivity) is that the
same CPPN can query substrates of arbitrary size or resolution. It is important to note that even
when size or resolution are changed, theCPPN itself remains the same. Thus the BEV can extend
its representation to different field sizes or to different levels of detail (i.e., resolutions), as shown
in Figure 6. In this way, the CPPN allows not only transfer to different numbers of players, but to
different field sizes and resolutions, all without the need for retraining.

Figure 6: Changing the BEV. Two kinds of alterations are depicted in this figure. First, the BEV
can be altered by increasing theareaof the substrate while maintaining the size of each
discrete cell by extrapolating new connection weights associated with previously unseen
cells. Second, resolution is increased by increasing the number of cells and shrinking the
area represented by each discrete cell. The CPPN automatically interpolatesconnection
weights for the new locations. Thus, the BEV allows new forms of transfer todiffering
field sizes or levels of precision.

It is important to understand that the dimensionality of the search space in HyperNEAT is not
the same as the dimensionality of the substrate because the search space is theCPPN, which is a
compact encoding of the pattern of connections in the substrate. For example, if the substrate reso-
lution is 20×20 then the number of possible connections in the substrate is 400×400= 160,000.
However, a CPPN that encodes this connectivity can itself contain ordersof magnitude fewer con-
nections. This fact also explains why resolution can increase without retraining. For example, if
resolution increases to 40× 40 (2,560,000 possible connections), there are new connections that
connect locations that previously did not exist at 20× 20. However, the same CPPN can simply
query the (x1,y1,x2,y2) coordinate of the new connections, thereby interpolating the weights of the

1750



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

new connections automatically. Although the number of connections in this example increases from
160,000 to 2,560,000, the dimensionality of the CPPN does not change at all.

The next section introduces the experiments that demonstrate the benefits ofthis geometric
approach.

4. Experimental Setup

The experiments in this paper are designed to investigate the role of representation in task transfer.
Of course, some representations are better suited to transfer in a given domain than others. Further,
the ability to transfer between tasks is dependent on the similarity of the tasks. However, this paper
focuses on the idea that a particularly effective representation for transfer is one thatdoes not need
to changefrom one task to the next. Because the representation is consistent, it has the potential
to exhibit improved performance in the target domain immediately after transfer,without further
learning. The advantage of a consistent representation is that the semanticrelationships learned
previously are preserved and then can be built upon. Because the BEVis the same irrespective
of the number of players on either side, it satisfies this requirement and allows the hypothesis that
consistent representation leads to immediate improvement in the target domain to betested. This
section explains the domains, the methods compared, and the experimental configurations.

4.1 RoboCup Keepaway Domain

RoboCup simulated soccer Keepaway (Stone et al., 2001) is well-suited to such an investigation
because it is a popular RL performance benchmark and can be scaled to different numbers of agents
to create new versions of the same task. All experiments are run on the Keepaway 0.6 player bench-
mark (Stone et al., 2006) and the RoboCup Simulator Soccer Server v. 12.1.1 (Cheny et al., 2003).
RoboCup Keepaway is a popular benchmark (Metzen et al., 2007; Stone et al., 2005; Taylor et al.,
2007a; Whiteson et al., 2005) in part because it includes a large state space, partially observable
state, and noisy sensors and actuators. It is also a stepping stone to full-blown RoboCup Soccer,
one of the hottest tasks in machine learning (Kalyanakrishnan et al., 2007; Kitano et al., 1997; Kok
et al., 2005; Kyrylov et al., 2005; Mackworth, 2009; Stolzenburg et al.,2006). In Keepaway,keep-
ers try to maintain possession of the ball within a fixed region andtakersattempt to take it away.
The number of agents and size of the field can be varied to make the task more or less difficult: The
smaller the field and the more players in the game, the harder it becomes.

4.2 Keepaway Benchmark

Each learning method in this paper is initially compared in the standard benchmarksetup (Stone
et al., 2005) of the three keepers versus two takers task on a 20m×20m field. In this setup, agents’
sensors are noisy and their actions are nondeterministic. Takers follow static policies, wherein the
first two takers go towards the ball and additional takers attempt to block open keepers. The learner
only controls the keeper who possesses the ball; its choices are to hold the ball or pass to a specific
teammate. The keepers’ reward is the length of time they hold ball. In the 3 vs. 2 task, 13 variables
represent the agent’s state (Stone et al., 2005). These include each player’s distance to the center
of the field, the distance from the keeper with the ball to each other player, the distance from each
other keeper to the closest taker, and the minimum angle between the other keepers and the takers
(Figure 7). The three possible actions are holding the ball or passing to one of the other two keepers.

1751



VERBANCSICS ANDSTANLEY

Figure 7: Visualization of Traditional State Variables in 3 vs. 2 Keepaway. The 13 state parameters
that represent the state in the 3 vs. 2 Keepaway task are depicted in this figure. The three
keepers are represented by the circles and the takers represented bythe triangles. The
state parameters include the distances from each player to the center of the field (marked
by the circle with the×), the distances from the keeper with the ball (denoted by the
circle with the +) to each other player, the distance from each other keeperto the taker
nearest them, and the angles along the passing lanes.

To investigate the ability of a static representation, that is, the HyperNEAT BEV, to learn this
task, it is compared to both static policies (Stone et al., 2006) and the learning algorithms Sarsa
(Rummery and Niranjan, 1994), NEAT (Stanley and Miikkulainen, 2004), and EANT (Metzen et al.,
2007). Unlike the BEV, the traditional representation (with 13 state variables) through which these
methods learn in 3 vs. 2 Keepaway must be changed for different versions of the task, such as 4 vs.
3 Keepaway. The static benchmarks are Always-Hold, Random, and a Hand-Coded policy, which
holds the ball if no takers are within 10m (Stone and Sutton, 2001). These static benchmarks provide
a baseline to validate that the BEV learns a non-trivial policy in the initial task.

State action reward state action (Sarsa; Rummery and Niranjan 1994) is an on-policy temporal
difference RL method that learns the action-value functionQ(s,a). The quintuple(s,a, r,s′,a′)
defines the update function forQ(s,a) by determining for a current state (s) and action (a) what
the reward (r) and the expected reward for the predicted next state (s′) and action (a′) will be. The
update equation is:

Q(s,a)← (1−α)Q(s,a)+α(r + γQ(s′,a′)),

whereα is the learning rate andγ is the discount factor for the future reward. The values inQ(s,a)
determine which action is taken in a given state by selecting the maximal value. Each keeper
separately learns which action to take in a given state to maximize the reward it receives (Taylor
et al., 2006).

Regular NEAT (Stanley and Miikkulainen, 2002) evolves ANNs to maximize a fitness function.
The ANN receives the 13 state inputs (like Sarsa) to define the state of the system and produce three
outputs to select an action. The fitness in RoboCup Keepaway is the average length of time that
keepers can hold the ball over a number of trials (Taylor et al., 2006). EANT (Metzen et al., 2007)
is an additional neuroevolution algorithm based on NEAT that learned Keepaway. Though similar
to NEAT, it distinguishes itself by more explicitly controlling the ratio of explorationto exploitation

1752



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

during the evolutionary process. These methods were chosen for comparison because they have
been tested in the same Keepaway configuration.

As described in Section 3, the HyperNEAT BEV transforms the traditional state representation
to explicitly capture the geometry. The standard substrate is a two-dimensional20×20 input layer
connected to a 20×20 output layer. Thus both the state and action spaces have 400 dimensionseach
(p1 . . . p400 anda1 . . .a400). As with Sarsa in Stone and Sutton (2001), this policy representation does
not include a hidden layer. However, the CPPN that encodes its weightsdoesevolve internal nodes.
Each node in a substrate layer represents a 1m2 discrete chunk of Keepaway field. Each keeper’s
position is marked on the input layer with a positive value of 1.0 in its containing node and takers
are similarly denoted by−1.0. Paths are literally drawn from the keeper with the ball to the other
players (as in Figure 8).

Figure 8: Visualizing the BEV Input Layer in 3 vs. 2 Keepaway. The inputlayer of the BEV is
marked with the positions of keepers, takers and paths. The keeper with theball is the
small square, other keepers are circles, and the takers are triangles. Positive input values
are denoted by lighter shades (for keepers and paths to keepers) andnegative input values
are denoted by darker shades (for takers and paths to takers). The middle shade represents
an input of 0.0, the lightest shade is+1.0, and the darkest shade is−1.0. The BEV
represents the distances and angles to other players in a geometric configuration, allowing
geometric relationships to be exploited by HyperNEAT. Paths implicitly represent which
keeper possesses the ball by converging on that keeper. (Note that the actual standard
input layer in the experiments is 20×20.)

Positive values of 0.3 depict paths to other keepers and values of−0.3 depict paths to takers.
These input values for agents and paths are experimentally determined androbust to minor variation.
Actions are selected from among the output nodes (top layer of Figure 5) that correspond to where
the keepers are located: If the highest output is the node where the keeper with the ball is located,
it holds the ball. Otherwise, it passes to the teammate with the highest output at its node. This
method of action selection thus corresponds exactly to the three actions available to Sarsa, NEAT,
and EANT. A key property of this representation is that it is independent of the number of players
on either side, unlike the representation in the traditional approaches.

The population size in HyperNEAT is 100. Available CPPN activation functions are absolute
value, bipolar sigmoid, Gaussian, linear, sine, and step. Activation is signed, resulting in a node out-

1753



VERBANCSICS ANDSTANLEY

put range of[−1,1]. By convention, a connection is not expressed if the magnitude the correspond-
ing CPPN output is below a minimal threshold of 0.2 (Gauci and Stanley, 2007). The probability of
adding a node to the CPPN is 0.05 and the probability of adding a connection is 0.18. The disjoint
and excess node coefficients were both 1.0 and the weight difference coefficient was 1.0. The initial
compatibility threshold was 20.0. These parameters were found to be robustto moderate variation
in preliminary experimentation.

HyperNEAT evolves the CPPN that encodes the connectivity between the ANN layers in the
substrate (up to 160,000 connections with a 20×20 resolution). Fitness is assigned according to the
generated network’s ball possession time averaged over at least 30 trials, with additional trials up to
100 assigned to those above the mean, following Taylor et al. (2006). Additionally, the CPPNs in
the initial population are given the geometric concept of locality (Section 2.4).

4.3 Keepaway Transfer

Task transfer, the focus of this work, is first evaluated by training a HyperNEAT BEV on the 3 vs.
2 task on a 25m×25m field (instead of the standard 20m×20m) and then testing the trained BEVs
on the 4 vs. 3 version of the task on the same fieldwithout any further training. The larger field
is needed to accommodate the larger version of the task (Taylor et al., 2007b). To switch from 3
vs. 2 to 4 vs. 3, the additional players and paths are simply drawn on the input layer as usual, with
no transformation of the representation or further training. The resulting performance on 4 vs. 3
is compared to TVITM-PS (Taylor et al. 2007b; described in Section 2.2), which is the leading
transfer method for this task. TVITM-PS results are from policies represented by an ANN trained
by NEAT (Taylor et al., 2007b). Unlike the HyperNEAT BEV, TVITM-PS requires further training
after transfer becauseρ expands the ANN by adding new state variables.

Additionally, two alternative forms of transfer are evaluated in Keepaway.The first is transfer
to increasing field sizes, which is evaluated by first training individuals on asmall (15m×15m) field
size and then testing trained individuals on the trained and larger field sizes (each of 15m×15m,
20m×20m, and 25m×25m). To adjust for field size changes, the size of the HyperNEAT BEV
substrate is changed to match the different field sizes (i.e., if the field size is 15m×15m, the substrate
is 15×15; if it is 25m×25m, the substrate is 25×25). In this way, the relative meaning of each
discrete input unit is held constant (e.g.,15m×15m

15×15 = 1m2 per input and25m×25m
25×25 = 1m2 per input).

The indirect encoding of the BEV extrapolates the trained knowledge fromone field size to the other
field sizes.

Second, transfer to substrates of different resolutions is evaluated bytraining individuals on a
single field size, then doubling the resolution in each dimension of the substrate(i.e., an individual
trained on a 20m×20m field with a 20× 20 substrate is reevaluated on a substrate changed to
40×40). This increase in resolution results in a smaller section of the field being represented by
each input (e.g.,20m×20m

20×20 = 1m2 per input and20m×20m
40×40 = 1

4m2 per input). The higher resolution
BEV is then tested on the same field size to evaluate the ability to transfer knowledge between
substrate resolutions. The new connections in the BEV are interpolated by the indirect encoding.
In principle, this ability to raise resolution could allow computational cost to be reduced by training
on a lower resolution and later raising resolution to increase the precision ofthe BEV.

1754



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

4.4 Knight Joust

Knight Joust is a predator-prey variant domain wherein the player (prey) starts on one side of the
field and the opponent (predator) starts on the opposite side (Taylor et al., 2007b). The player must
then travel to the opposite side of the field while evading the opponent. The name Knight Joust
reflects that the player is allowed three potential moves: move forward, knight jump left, and knight
jump right, where aknight jumpis two steps in the direction left or right and then forward (as in
chess). The opponent follows a stochastic policy that attempts to intercept the player. The traditional
state representation consists of the distance to the opponent, the angle between the opponent and
the left side, and the angle between the opponent and the right side (Figure 9).

Figure 9: Knight Joust World. In Knight Joust, the player (circle) begins on the side markedStart
and must reach the side markedEnd, while evading the opponent (triangle). The player
is given the state information of the distance to the opponent,d, the angle between the
opponent and the left side,α, and the angle between the opponent and the right side,β.
This state information can similarly be drawn on the substrate of the BEV by marking the
position of the player, opponent, the path between them, and the paths to the corners.

While Knight Joust is significantly different from Keepaway, a feature of both is that at each step
the agent must make the decision that best avoids the opponent. However,Knight Joust is simpler,
eliminating such complexity as multiple agents, noise, and kicking a ball, making it moretractable.
The simplification makes it ideal for cross-domain transfer; because training is quicker and easier
than in Keepaway, knowledge is more quickly bootstrapped. In Taylor et al. (2007a), cross-domain
transfer from Knight Joust to Keepaway was shown to enhance learning. Additionally, the Hyper-
NEAT BEV can represent the state information in Figure 9 by drawing the stateinformation onto
the inputs.

In particular, the player and opponent are indicated by+1.0 and−1.0 respectively. The path
to the opponent is shown by values of−0.3 and the paths to the goal-side corners are marked with
+0.3. Actions are selected from among the output nodes representing the position in front of the
player (move forward), the left corner (knight jump left), and the right corner (knight jump right).
This representation of state is similar to Keepaway, but the semantics are different: The player in
Knight Joust is selecting a direction of movement instead of a passing positionand the paths to the
corners indicate the direction of the goal rather than teammate positions.

1755



VERBANCSICS ANDSTANLEY

The evaluation of cross-domain transfer is completed by first training for 20 generations in the
Knight Joust domain. Fitness is assigned to the individuals in Knight Joust by awarding 1 point
for only moving forward and a bonus of 20 points for reaching the end. Next, the champions of
these runs seed the runs for 3 vs. 2 Keepaway. Finally, Keepaway training is run for ten generations.
The runs seeded with individuals trained in Knight Joust can then be compared to Keepaway runs
without such transfer. This experiment is interesting because it can help toshow that static transfer
is beneficial with the BEV even in cases where the input semantics of the two tasks have slightly
different meaning.

5. Results

This section describes the results of training the BEV on the Keepaway benchmark, the transfer
performance among variations of the Keepaway task, and finally the performance of the BEV in
cross-domain transfer from Knight Joust to Keepaway. Videos of evolved Keepaway behaviors are
available at http://eplex.cs.ucf.edu/hyperneat-keepaway.html.

5.1 RoboCup Keepaway Performance Evaluation

In the RoboCup Keepaway benchmark, performance is measured by the number of seconds that the
keepers maintain possession (Stone and Sutton, 2001; Stone et al., 2006;Taylor et al., 2007b). After
training, the champion of each epoch is tested over 1,000 trials. Performance results are averaged
over five runs with each consisting of 50 generations of evolution. This number of generations
was selected because the correspondingsimulatedtime spent in RoboCup during training equals
simulated time (800-1,000 hours) for previous approaches (Taylor et al.,2006; Metzen et al., 2007).
The test on the 3 vs. 2 benchmark is intended to validate that the BEV learns competitively with
other leading methods.

In 3 vs. 2 Keepaway on the 20m×20m field, the best keepers from each of the five runs con-
trolled by a BEV substrate trained by HyperNEAT maintain possession of the ball on average for
15.4 seconds (sd= 1.31), which significantly outperforms (p< 0.05) all static benchmarks (Table
1). Furthermore, assuming similar variance, this performance significantly exceeds (p< 0.05) the
current best reported average results (Stone et al., 2001, 2005; Taylor et al., 2006) on this task for
both temporal difference learning (12.5 seconds) and NEAT (14.0 seconds), and matches EANT
(14.9 seconds; Table 1). The important implication of this result is that the HyperNEAT BEV is at
least competitive with the top learning algorithms on this task.

5.2 Keepaway Transfer Results

In transfer learning, the main focus of this work, the BEV is evaluated by testing individuals trained
for 20 generationsonly on the 3 vs. 2 task on a 25m×25m field. Learned policies are then tested
on both the 3 vs. 2 and 4 vs. 3 tasks for 1,000 trials each without any further training. Note that
this evaluation of transfer differs from Taylor et al. (2007b), in which teams trained on the smaller
task arefurther trainedon the larger task after the transfer because new parameters are added. In
contrast, transfer within the BEV requires no changes or transformations. Performance is averaged
over five runs, following Taylor et al. (2006). Figure 10 shows the average test performance onboth
3 vs. 2 (trained) and 4 vs. 3 (untrained; immediately after transfer) of each generation champion.

1756



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

METHOD AVERAGE HOLD TIME

HYPERNEAT BEV 15.4S

EANT 14.9S

NEAT 14.0S

SARSA 12.5S

HAND-TUNED BENCHMARK 8.3S

ALWAYS HOLD BENCHMARK 7.5S

RANDOM BENCHMARK 3.4S

Table 1: Average Best Performance by Method. The HyperNEAT BEV holds the ball longer than
previously reported best results for neuroevolution and temporal difference learning meth-
ods. Results are shown for Evolutionary Acquisition of Neural Topologies (EANT) from
Metzen et al. (2007), NeuroEvolution of Augmenting Topologies (NEAT) from Taylor
et al. (2006), and State action reward state action (Sarsa) from Stone and Sutton (2001).

Figure 10: Transfer Learning From 3 vs. 2 to 4 vs. 3 Keepaway on a 25m×25m Field. As the
performance (averaged over five runs) of the champion on the 3 vs. 2 task improves, the
transfer performance on the 4 vs. 3 task also consequently improves from 6.6 seconds
to 8.1 seconds withoutever training for it. The improvement is positively correlated
(r = 0.87).

Testing performance on the 3 vs. 2 task improves to 14.3 seconds on average over each run.
At the same time, the test performance of these same individuals on the 4 vs. 3 task, which was
not trained, improves from 6.6 seconds to 8.1 seconds on average. In contrast, the previous best
approach to transfer learning in this domain required executing a transferfunction and additional

1757



VERBANCSICS ANDSTANLEY

training for between 50 and 200 hours (depending on the chosen transfer function)beyondthe
initial bootstrap training in 3 vs. 2 to achieve a comparable 8.0 second episodeduration (Taylor
et al., 2007b). Thus, because the BEV is static, transfer is instantaneous and requires no special
adjustments to the representation to achieve the same result as many hours offurther training with
the TVITM-PS transfer method.

Although the BEV improves in 4 vs. 3 Keepaway even when only trained in 3 vs. 2, it is still
informative to investigate the effect of further training in the 4 vs. 3 task. For this purpose, individ-
uals are trained on the 3 vs. 2 task for 20 generations and then further trained on the 4 vs. 3 task
for 30 generations. The performance of these policies is contrasted with keepers trained on 4 vs. 3
from scratch for 50 generations. Performance is averaged over fiveruns and generation champions
are evaluated over 1,000 episodes. Figure 11 shows the average test performance of the generation
champions. The individuals trained solely on 4 vs. 3 improve from 6.2 seconds to 8.0 seconds. In-
terestingly, this performance is equivalent to policies trained only in the 3 vs.2 task and transferred
to 4 vs. 3. However, individuals trained on 3 vs. 2 for the first 20 generations increase their test
performance on 4 vs. 3 to 9.1 seconds over the last 30 generations. Thefinal difference between
further training after transfer and training from scratch is significant (p< 0.05).

Figure 11: Further Training After Transfer From 3 vs. 2 to 4 vs. 3 Keepaway on a 25m×25m Field.
Performance of individuals trained on 3 vs. 2 then transferred to 4 vs. 3and further
trained are contrasted with individuals solely trained on 4 vs. 3. All depictedresults are
performance on the 4 vs. 3 task. Prior training on 3 vs. 2 and transfer to the 4 vs. 3
enhances keeper performance by beginning in a more optimal area of the search space.

An important factor in the superior performance of the learner that was transferred is the behav-
ior of the third taker in the 4 vs. 3 task, which seeks to block the most open player. This behavior
differs from 3 vs. 2, in which the two takers attempt to take the ball only by always heading towards

1758



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

it. When training on 4 vs. 3 without previously learning on 3 vs. 2, the third taker’s behavior may
inhibit performance by preventing important knowledge from being learned. For example, in 3 vs.
2 an important concept is to pass to the most open player. However, in 4 vs.3 the most open player
is not always the best choice because of the behavior of the third taker; therefore policies that learn
the concept of passing to the most open player, which is still an important skill,are not discovered.

A thorough evaluation of transfer recognizes that there is more than one way to alter a task. Thus
transfer learning is also evaluated by testing the best policy trained in 3 vs. 2on varied field sizes.
Stone et al. (2001) previously investigated this kind of transfer on their best Sarsa solution in an
easier version of the Keepaway task that does not include noise by testinga single high-performing
individual that was trained on a fixed field size (15m×15m) not only on the trained field size, but
also on the other two field sizes. The best policy trained by the HyperNEAT BEV (which, unlike
Sarsa, was subject to noise) on the 15m×15m field size was also tested in this way (Figure 12).

Figure 12: 3 vs. 2 Transfer Performance To Larger Field Sizes. Transfer to larger field sizes is eval-
uated by testing an individual trained on a single field size (15m×15m) on two larger
field sizes (20m×20m and 25m×25m) as well. The BEV is scaled by matching the
substrate size to the field size, thus maintaining the same field area representedby each
discrete unit on the substrate. Depicted results from Stone and Sutton (2001) show that
as a policy trained by Sarsa is transferred to larger field sizes, itdecreasesin perfor-
mance. However, the task iseasieras field size increases, as shown by the performance
of hand-designed policies (Random, Always Hold, and Hand-Tuned) that increasein
performance as field size increases. In contrast, the BEV learns a policythat outper-
forms the hand-designed policies and transfers to the larger field sizes,significantly
improvingperformance.

The results are interesting because they show that the representation cancause performance to
vary in unexpected ways. For example, even though larger field sizes are easier, Stone and Sut-
ton (2001) report that the performance of the best keepers trained bySarsadeclineswhen they are

1759



VERBANCSICS ANDSTANLEY

transferred to larger fields. However, even hard-coded policies, such as Random, Always Hold, or
Hand Tuned, increase in performance as field size increases, demonstrating the decreased difficulty
of the task. Also, in contrast to Sarsa, when transferred to larger fields, the keepers trained with
the HyperNEAT BEV improve performance (as would be expected) from 5.6 seconds to 11.0 sec-
onds and 13.8 seconds, respectively, and outperform the hand-designed policies (Figure 12). These
improvements make sense because the task should become easier when thereis more room on the
field.

The BEV’s advantage is that the geometric relationships encoded in the CPPNcan be extrap-
olated as the field size increases, thereby extending the knowledge from the smaller field size to
the newer areas of the larger field. For Sarsa, such extrapolation is notpossible because as field
size increases, the new areas represent previously unseen distances for which Sarsa was not trained.
Sarsa has no means to extrapolate geometric knowledge from the distances ithas seen because, un-
like the CPPN, the knowledge learned is not afunctionof the domain geometry (i.e., the geometric
relationships on a two-dimensional soccer field). Instead, Sarsa learnsa function of the examples
presented, which do not explicitly describe the geometry of the domain.

Another important lesson from changing the field size is that BEV performance requires a min-
imal resolution. When the field size is 15m×15m, the BEV performance appears to underperform
compared to Sarsa. In part, this difference is because Sarsa was testedoriginally without noise
(Stone et al., 2001). A later experiment with Sarsa trained on the 15m×15m with noise (Stone
et al., 2005) shows that its performance is similar to the BEV. However, another factor is simply
that when the field size is 15m×15m, the BEV resolution isalsoat 15×15, which may be too low
to capture the detail necessary to succeed in the task. Confirming this hypothesis, if the BEV is
trained at 30×30 resolution on a 15m×15m field, its performance rises significantly, to 7.1 seconds
compared to 7.4s for Sarsa when itis trained with noise on 15m×15m (Stone et al., 2005). This re-
sult raises the interesting question of whether resolution can beraisedabove the training resolution
without negative impact, as the next experiment addresses.

The final result in Keepaway is that the knowledge learned through the indirect encoding, that
is, the CPPN, is not negatively impacted by later increasing resolution from that at which the BEV
was trained. The substrate resolution of the champion individuals from fiveruns from training on
three field sizes (15m×15m, 20m×20m, and 25m×25m) are doubled in each dimension and then
tested again on the same field size. For example, a 20×20 BEV becomes 40×40, which means that
each input represents one quarter as much of the space as before. This BEV quadruples the number
of inputs and outputs while increasing the number of connections by a factorof 16 (from 160,000
to 2,560,000 connections). Table 2 shows that no matter the field size, even massively increasing
the resolution does not degrade performance and can even lead to afreeperformance increase.

For the 15m×15m, 20m×20m, and 25m×25m field sizes, doubling the size of each dimension
on average changes performance from 4.6 seconds to 5.3 seconds, 15.4 seconds to 15.9 seconds,
and 16.8 seconds to 16.9 seconds respectively. In one instance, on the20m×20m field, performance
improved instantly from 16.6 seconds to 18.9 seconds. The advantage of this capability is that the
BEV resolution can be selectively increased while maintaining the same performance, which makes
possible further training with a higher resolution BEV.

1760



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

PERFORMANCE

TRAINING FIELD SIZE TRAINED RESOLUTION INCREASEDRESOLUTION

15M×15M 4.6S 5.3S

20M×20M 15.4S 15.9S

25M×25M 16.8S 16.9S

Table 2: Average Performance of the Best Individuals at Different Resolutions. The regularities
learned by the indirect encoding are not dependent on the particular substrate resolution
and may be extrapolated to higher resolutions. Increasing the number of connections in
the substrate by a factor of 16 (by doubling the size of each dimension) does not degrade
performance; in fact, it even improves it significantly in some cases.

5.3 Knight Joust Transfer Results

Cross-domain transfer is evaluated from the non-Keepaway task of Knight Joust on a 20×20 grid
to 3 vs. 2 Keepaway on a 20m×20m field. Evolution is run for 20 generations on the Knight Joust
task and then the champions seed the beginning generations of 3 vs. 2 Keepaway. Further training
is then performed over ten additional generations of evolution. Performance in Keepaway of the
champion players from Knight Joust is on average 0.3 seconds above the performance of initial
random individuals. After one generation of evolution, the best individuals from transfer exceed
the raw performance by 0.6 seconds. Finally, after ten further generations, the best individuals with
transfer hold the ball for 1.1 seconds longer than without transfer (Figure 13).

The differences are significant (p< 0.05). Thus even preliminary learning in a significantly
different domain proved beneficial to the BEV. In contrast, previous transfer results from Knight
Joust to Keepaway from Taylor and Stone (2007) demonstrated an initial performance advantage,
but after training for five simulator hours (which is less than the duration of ten generations) there
was no performance difference between learning with transfer and without it.

Overall, the results establish that the BEV is highly effective in transfer in Keepaway. The next
section discusses the deeper implications of these results.

6. Discussion and Future Work

Methods that alter representation remain important tools in task transfer for domains in which the
representation must change with the task. However, the BEV shows that a carefully chosen repre-
sentation with the right encoding can sometimes eliminate the need to change the representation,
even across different domains.

The deeper lesson is the critical role of representation in transfer and theconsequent need for
algorithms that can learn from relatively high-dimensional static representations of task geometry.
Indeed, the human eye containsmillions of photoreceptors, which provide the same set of inputs to
every visual task tackled by humans. No new photoreceptor is added fora new task. In effect, visual
input to the human eye is a static representation (i.e., it does not alter when changing tasks) of state
to the human brain. While it is true that the information from the eye is interpreted by the visual
cortex, the set of inputs to the cortex, which are the photoreceptors of theeye, remains the same. In
this paper, the BEV contains no hidden layers. However, by adding hiddenlayers it is possible to

1761



VERBANCSICS ANDSTANLEY

Figure 13: Transfer Results from Knight Joust to Keepaway. Direct transfer and further training
performance averaged over 30 runs is shown. The performance of raw champions from
Knight Joust on Keepaway outperforms initial random individual by 0.3 seconds. After
one generation, this advantage from transfer increases to 0.6 secondsand at 10 genera-
tions the advantage is 1.1 seconds. Thus performance on Keepaway, both instantaneous
and with further training, benefits from transfer from the Knight Joust domain with sig-
nificance p< 0.05.

add the intervening interpretation of the input state analogously to how the visual cortex interprets
data from the eye. HyperNEAT substrates with hidden layers have been shown to work in the past
in domains without transfer (D’Ambrosio and Stanley, 2008; Clune et al., 2009; Gauci and Stanley,
2010). Thus the prospects are good for expanding the scope of static transfer. Nevertheless, of
course the human eye represents an ideal, and not all possible domains are amenable to keeping the
representation static. Yet for those that are, the investigation in this paper shows that it can provide
an advantage.

The ability of a representation to remain static is dependent upon the particulardifferences be-
tween the tasks. Tasks that are semantically similar should be able to represent state information
similarly in the BEV, requiring no changes to the representation. Tasks that are significantly dif-
ferent, either through state information or actions, may not allow the representation to remain the
same. However, even then there are potential ways to allow the BEV to retain what was learned
in the previous task and build upon it while being altered. For example, one option is to add new
input layers or output layers. These new layers can denote new information or actions associated
with new objects in the environment while the previously-trained input and output layers retain the
prior knowledge. Geometry thus remains an advantage because state information that is connected
with the same location (e.g., all the state data for a single agent) would be located at the same coor-
dinate on separate layers. In contrast, an ANN without geometry would have no means to discern
which original inputs are associated with which new inputs and would thus instead have to learn
such relationships.

1762



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

The role of representation in transfer is relevant to all approaches to learning because transfer is
always an option for extending the scope of learning. Thus encoding research, such as in generative
and developmental systems (Bentley and Kumar, 1999; Hornby and Pollack, 2002; Lindenmayer,
1968; Stanley, 2007; Bentley and Kumar, 1999; Turing, 1952), and representation research, such
as in relational reinforcement learning (Deroski et al., 2001; Morales,2003; Tadepalli et al., 2004),
is important to machine learning in general. Static representations mean that instead of training
a new policy, or retraining a previous one, the same policy can be transferred without change.
Additionally, the static nature of the representation allows the same policy to train on multiple
tasks simultaneously. For example, a soccer player does not practice by playingonlysoccer games.
Players improve through multiple drills and continually practice in-between gamesto refine skills.

The encoding of the solution also impacts the kinds of policies that are found.For example, in
this paper the policy is encoded by a CPPN that is expressed as a function of the task geometry,
which enables the solution to exploit regularities in the geometry and extrapolateto previously un-
seen areas of the geometry. It should also be possible to simplify the searchfor a policy that is a
function of the geometry in other learning approaches as well. The challenge is that gradient infor-
mation (i.e., error) cannot directly pass through the indirection between the ANN and its generating
CPPN. A method that solves this problem would open up the power of indirectencoding to all of
RL.

6.1 Prospects for Full RoboCup Soccer

An exciting implication of this work is that the power of static transfer and indirect encoding can
potentially bootstrap learning the complete game of soccer. After all, the key elements of soccer are
present in Keepaway as well. In fact, the results in this paper demonstrate that a static representation
can competitively learn to hold the ball in Keepaway and that this skill transfers immediately through
the BEV to variations of that task. The static BEV state representation enablesthe learned policy
to transfer to variations of the task in which the number of players is changed(e.g., 3 vs. 2 to 4 vs.
3). Furthermore, indirectly encoding the policy enables the same policy to be applied to variations
of the task in which the geometry has been changed (e.g., moving from 20m×20m to 25m×25m
field size) HyperNEAT has also been proven effective in a wide variety of tasks (D’Ambrosio and
Stanley, 2008; Clune et al., 2009; Stanley et al., 2009; Gauci and Stanley, 2010).

Interestingly, the Keepaway domain was designed as a stepping stone to scaling machine learn-
ing methods to the full RoboCup soccer domain (Stone and Sutton, 2001). The same principles that
enable the BEV to transfer among variations of the Keepaway domainalsocan potentially enable
the BEV to scale to full Keepaway soccer. For example, because the representation remains static
no matter how many players are on the field, training can begin with a small numberof players,
such as 3 vs. 3 soccer, and iteratively add more players, eventually scaling up to the full 11 vs. 11
soccer game. Furthermore, varying the substrate configuration while the solution encoding remains
static makes it possible to train skills relevant to RoboCup on subsets of the fullfield, for example,
half-field offense/defense. In this way, varying the number of playersand varying the field size are
both required to transfer from the RoboCup Keepaway domain to full RoboCupsoccer. Thus this
study suggests a novel path to learning full-fledged soccer.

A distinctive feature of the BEV representation is that actions arealsoselected in the BEV, that
is, the outputs are in the same geometry as the field. In the RoboCup Keepawaydomain, actions
are constrained to holding the ball and directly passing to a teammate. However, there are many

1763



VERBANCSICS ANDSTANLEY

other actions that are possible, such as clearing the ball, kicking the ball out of bounds, dribbling,
and passing to a location close to a teammate. Furthermore, the BEV can potentiallycontrol players
without the ball. By requesting actions in the BEV geometry, actions can be selected based on
positions instead of objects.

For example, the keeper with the ball can potentially selectanyposition on the BEV to which
to kick the ball. That way, the BEV is not constrained in its actions. The playerwith the ball can
then choose from passes to teammates, passes to positions near teammates, ordribble by kicking
the ball to a nearby position and then pursuing the ball. Players without the ball can be controlled by
interpreting the outputs of the BEV as the desired location towards which that player should move.
Thus an interesting property of the BEV is that the state space can transfer, by accommodating new
players or field sizes, and the action space canalsotransfer in the same way. Ultimately, the promise
of such transfer is tied to the idea of static representation, whose potential was highlighted in this
paper.

7. Conclusion

This paper introduced the BEV representation, which simplifies task transfer by making the state
representation static. That way, no matter how many objects are in the domain, the size of the state
representation remains the same. In contrast, in traditional representations, changing the number
of players (e.g., in the RoboCup Keepaway task) forces changes in the representation by adding
dimensions to the state space. In addition to results competitive with leading methodson the Keep-
away benchmark, the BEV, which is enabled by an indirect encoding, achieved transfer learning
from 3 vs. 2 to 4 vs. 3 Keepawaywithout further training. Improvement after further training then
demonstrated that the knowledge gained from the transfer does indeed facilitate further learning
the more difficult task. Transfer also proved successful not only among variations on the number of
players, but also among different field sizes and substrate resolutions.Finally, cross-domain transfer
was demonstrated, from Knight Joust to Keepaway. The cross-domain transfer improved not only
immediate performance, but also enhanced further learning. All these results highlight the critical
role that representation plays in learning and transfer. By altering the representation, transfer learn-
ing is simplified. Yet high-dimensional static representations require indirectencodings that take
advantage of their expressive power, such as in HyperNEAT. The hope is that advanced represen-
tations in conjunction with indirect encoding can later contribute to scaling learning techniques to
more challenging tasks, such as the complete RoboCup soccer domain.

Acknowledgments

This research is supported in part by a Science, Mathematics, and Research for Transformation
(SMART) fellowship from the American Society of Engineering Education (ASEE) and the Naval
Postgraduate School.

References

Timo Aaltonen et al. Measurement of the top quark mass with dilepton events selected using neu-
roevolution at CDF.Physical Review Letters, 2009.

1764



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

Lee Altenberg. Evolving better representations through selective genomegrowth. InProceedings of
the IEEE World Congress on Computational Intelligence, pages 182–187, Piscataway, NJ, 1994.
IEEE Press.

Peter J. Angeline, Gregory M. Saunders, and Jordan B. Pollack. An evolutionary algorithm that
constructs recurrent neural networks.IEEE Transactions on Neural Networks, 5:54–65, 1993.

Petet J. Bentley and Sanjeev Kumar. The ways to grow designs: A comparison of embryogenies for
an evolutionary design problem. InProceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999), pages 35–43, San Francisco, 1999. Kuafmann.

Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. On-line neuroevolution applied to the
open racing car simulator. InProceedings of the 2009 IEEE Congress on Evolutionary Compu-
tation (IEEE CEC 2009), Piscataway, NJ, USA, 2009. IEEE Press.

Rich Caruana. Multitask learning. InMachine Learning, pages 41–75, 1997.

Mao Cheny, Klaus Dorer, Ehsan Foroughi, Fredrik Heintz, ZhanXiangHuangy, Spiros Kapetanakis,
Kostas Kostiadis, Johan Kummeneje, Jan Murray, Itsuki Noda, Oliver Obst, Pat Riley, Timo
Steffens, Yi Wangy, and Xiang Yin.Robocup Soccer Server: User’s Manual. The Robocup
Federation, 4.00 edition, February 2003.

Peter Clark.Machine and Human Learning. London: Kogan Page, 1989.

Jeff Clune, Benjamin E. Beckmann, Charles Ofria, and Robert T. Pennock. Evolving coordinated
quadruped gaits with the hyperneat generative encoding. InProceedings of the IEEE Congress on
Evolutionary Computation (CEC-2009) Special Section on Evolutionary Robotics, Piscataway,
NJ, USA, 2009. IEEE Press.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. InProceedings of the 25th International Conference on
Machine Learning, New York, NY, 2008. ACM Press.

David D’Ambroiso and Kenneth O. Stanley. Evolving policy geometry for scalable multiagent
learning. InProceedings of the Ninth International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS-2010), page 8, New York, NY, USA, 2010. ACM Press.

David B. D’Ambrosio and Kenneth O. Stanley. Generative encoding for multiagent learning. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008), New
York, NY, 2008. ACM Press.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient
reinforcement learning. InICML ’08: Proceedings of the 25th International Conference on
Machine learning, pages 240–247, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-
4. doi: http://doi.acm.org/10.1145/1390156.1390187.

Sao Deroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Machine
Learning, 43(1-2):7–52, April-May 2001.

1765



VERBANCSICS ANDSTANLEY

Jason Gauci and Kenneth O. Stanley. Generating large-scale neural networks through discovering
geometric regularities. InProceedings of the Genetic and Evolutionary Computation Conference,
page 8, New York, NY, 2007. GECCO-2007, ACM.

Jason Gauci and Kenneth O. Stanley. A case study on the critical role of geometric regularity in
machine learning. InProceedings of the Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI-2008), Menlo Park, CA, 2008. AAAI Press.

Jason Gauci and Kenneth O. Stanley. Autonomous evolution of topographic regularities in artificial
neural networks.Neural Computation, page 38, 2010.

Faustino Gomez and Risto Miikkulainen. Solving non-Markovian control tasks with neuroevolu-
tion. In Proceedings of the 16th International Joint Conference on Artificial Intelligence, pages
1356–1361, San Francisco, 1999. Kaufmann.

Frederic Gruau, Darrell Whitley, and Larry Pyeatt. A comparison between cellular encoding and
direct encoding for genetic neural networks. In John R. Koza, DavidE. Goldberg, David B.
Fogel, and Rick L. Riolo, editors,Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 81–89, Cambridge, MA, 1996. MIT Press.

Inman Harvey.The Artificial Evolution of Adaptive Behavior. PhD thesis, School of Cognitive and
Computing Sciences, University of Sussex, Sussex, 1993.

Gregory S. Hornby and Jordan B. Pollack. Creating high-level components with a generative rep-
resentation for body-brain evolution.Artificial Life, 8(3), 2002.

Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone.RoboCup 2006: Robot Soccer World Cup
X, volume 4434 ofLecture Notes in Computer Science, chapter Half Field Offense in RoboCup
Soccer: A Multiagent Reinforcement Learning Case Study. Springer Berlin / Heidelberg, 2007.

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and Hitoshi Matsub-
ara. Robocup: A challenge problem for AI.AI Magazine, 18(1):73–87, Spring 1997.

Jelle R. Kok, Matthijs T. J. Spaan, and Nikos Vlassis. Non-communicative multi-robot coordination
in dynamic environments.Robotics and Autonomous Systems, 50(2-3):99–114, February 2005.

Benjamin Kuipers. The spatial semantic heirarchy.Artifical Intelligence, 119:191–233, 2000.

Vadym Kyrylov, Martin Greber, and David Bergman. Multi-criteria optimizationof ball passing in
simulated soccer.Journal of Multi-Criteria Decision Analysis, 13:103–113, 2005.

Aristid Lindenmayer. Mathematical models for cellular interaction in developmentparts I and II.
Journal of Theoretical Biology, 18:280–299 and 300–315, 1968.

Alan Mackworth. Agents, bodies, constraints, dynamics, and evolution.AI Magazine, 30(1):7–28,
Spring 2009.

Andrew P. Martin. Increasing genomic complexity by gene duplication and theorigin of vertebrates.
The American Naturalist, 154(2):111–128, 1999.

1766



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

Jan FH. Metzen, Mark Edgington, Yohannes Kassahun, and Frank Kirchner. Per-
formance evaluation of EANT in the robocup keepaway benchmark. InICMLA
’07: Proceedings of the Sixth International Conference on Machine Learning and
Applications, pages 342–347, Washington, DC, USA, 2007. IEEE Computer Soci-
ety. ISBN 0-7695-3069-9. doi: http://dx.doi.org/10.1109/ICMLA.2007.80.URL
http://dx.doi.org/10.1109/ICMLA.2007.80.

Eduardo Morales. Scaling up reinforcement learning with a relational representation. InProceed-
ings of the Workshop on Adaptability in Multi-agent Systems (AORC-2003), pages 15–26, Sydney,
Austrailia, January 2003.

Sinno Pan and Qiang Yang. A survey on transfer learning. Technical Report HKUST-CS08-08,
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
November 2008.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley-Interscience, April 1994.

Jan Ramon, Kurt Driessens, and Tom Croonenborghs. Transfer learning in reinforcement learning
problems through partial policy recycling. InProceedings of the 18th European Conference on
Machine Learning, pages 699–707, Berlin, Germany, 2007. Springer-Verlag.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems.
CUED/F-INFENG/TR 166, Cambridge University Engineering Department, 1994.

Natarajan Saravanan and David B. Fogel. Evolving neural control systems. IEEE Expert, pages
23–27, June 1995.

Jurgen Schmidhuber and Fakultat Fur Informatik. On learning how to learnlearning strategies.
Technical report, Fakultat fur Informatik, Technische Universitat Munchen. Revised, 1994.

Kenneth O. Stanley. Compositional pattern producing networks: A novel abstraction of develop-
ment. Genetic Programming and Evolvable Machines Special Issue on Developmental Systems,
8(2):131–162, 2007.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies.Evolutionary Computation, 10:99–127, 2002.

Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution through evolutionary com-
plexification.Journal of Artificial Intelligence Research, 21:63–100, 2004.

Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Real-time neuroevolution in the
NERO video game.IEEE Transactions on Evolutionary Computation Special Issue on Evolu-
tionary Computation and Games, 9(6):653–668, 2005.

Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A hypercube-based indirect encoding
for evolving large-scale neural networks.Artificial Life, 15(2), 2009.

Frieder Stolzenburg, Jan Murray, and Karsten Sturm. Multiagent matchingalgorithms with and
without coach.Journal of Decision Systems, 15(2-3):215–240, 2006. Special issue on Decision
Support Systems. Guest editors: Fatima C. C. Dargam and Pascale Zarate.

1767



VERBANCSICS ANDSTANLEY

Peter Stone and Richard S. Sutton. Scaling reinforcement learning to robocup soccer. InThe
Eighteenth International Conference on Machine Learning, pages 537–544, New York, NY, June
2001. ICML 2001, ACM.

Peter Stone, Richard S. Sutton, and Satinder Singh. Reinforcement learning in 3 vs. 2 keepaway. In
Peter Stone, T. Balch, and G. Kraetszchmar, editors,Robocup-2000: Robot soccer world cup IV,
pages 249–258. Springer Verlag, Berlin, 2001.

Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement learning for RoboCup-
soccer keepaway.Adaptive Behavior, 13(3):165–188, 2005.

Peter Stone, Gregory Kuhlmann, Matthew E. Taylor, and Yaxin Liu. Keepaway soccer: From
machine learning testbed to benchmark. InRoboCup-2005: Robot Soccer World Cup IX, pages
93–105. Springer Verlag, 2006.

Richard Sutton and Andrew Barto.Reinforcement Learning: An Introduction. MIT Press, 1998.

Richard S. Sutton. Learning to predict by the methods of temporal differences. InMachine Learn-
ing, pages 9–44, 1988.

Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. InAdvances in Neural Information Processing Systems 8, pages 1038–1044. MIT
Press, 1996.

Prasad Tadepalli. Learning to solve problems from exercises.Computational Intelligence, 4(24):
257–291, 2008.

Prasad Tadepalli, Robert Givan, and Kurt Driessens. Relational reinforcement learning: An
overview. InInternational Conference on Machine Learning Workshop on RelationalReinforce-
ment Learning, New York, NY, 2004. ACM Press.

Erik Talvitie and Satinder Singh. An experts algorithm for transfer learning. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence, pages 1065–1070, 2007.

Matthew E. Taylor and Peter Stone. Cross-domain transfer for reinforcement learning. InProceed-
ings of the 24th International Conference on Machine learning, pages 879–886, New York, NY,
USA, 2007. ACM.

Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Comparing evolutionary and temporal
difference methods in a reinforcement learning domain. InProceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2006), pages 1321–1328, New York, NY, July 2006.
ACM Press.

Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning vis inter-task mappings for tem-
poral difference learning.Journal of Machine Learning Research, 1(8):2125–2167, September
2007a.

Matthew E. Taylor, Shimone Whiteson, and Peter Stone. Transfer via intertask mappings in policy
search reinforcement learningn. InThe Autonomous Agents and Multi-Agent Systems Conference,
New York, NY, May 2007b. AAMAS-2007, ACM Press.

1768



EVOLVING STATIC REPRESENTATIONS FORTASK TRANSFER

Gerald Tesauro. Practical issues in temproal difference learning.Machine Learning, 8(3-4):257–
277, May 1992.

Sebastian Thrun and Tom M. Mitchell. Learning one more thing. Technical report, Carnegie Mellon
University, 1994.

Lisa Torrey, Jude W. Shavlik, Trevor Walker, and Richard Maclin. Ruleextraction for transfer learn-
ing. In Rule Extraction from Support Vector Machines, pages 67–82. Springer-Verlag, Berlin,
Germany, 2008a.

Lisa Torrey, TrevorWalker, Richard Maclin, and Jude Shavlik. Advicetaking and transfer learning:
Naturally inspired extensions to reinforcement learning. InAAAI Fall Symposium on Naturally
Inspired AI, Washington, DC, 2008b. AAAI Press.

Alan Turing. The Chemical Basis of Morphogenesis.Royal Society of London Philosophical Trans-
actions Series B, 237:37–72, August 1952.

James D. Watson, Nancy H. Hopkins, Jeffrey W. Roberts, Joan A. Steitz, and Alan M. Weiner.
Molecular Biology of the Gene Fourth Edition. The Benjamin Cummings Publishing Company,
Inc., Menlo Park, CA, 1987.

Shimon Whiteson. Improving reinforcement learning function approximatorsvia neuroevolution.
In AAMAS ’05: Proceedings of the Fourth International Joint Conferenceon Autonomous Agents
and Multiagent Systems, pages 1386–1386, New York, NY, USA, 2005. ACM. ISBN 1-59593-
093-0. doi: http://doi.acm.org/10.1145/1082473.1082794.

Shimon Whiteson and Daniel Whiteson. Stochastic optimization for collision selection in high
energy physics. InIAAI 2007: Proceedings of the Nineteenth Annual Innovative Applications of
Artificial Intelligence Conference, Vancouver, British Columbia, Canada, July 2007. AAAI Press.

Shimon Whiteson, Nate Kohl, Risto Miikkulainen, and Peter Stone. Evolving soccer keepaway
players through task decomposition.Mach. Learn., 59(1-2):5–30, 2005.

Xin Yao. Evolving artificial neural networks.Proceedings of the IEEE, 87(9):1423–1447, 1999.

1769


	Evolving Static Representations for Task Transfer
	Recommended Citation

	verbancsics10a.dvi

