7 research outputs found

    A continues multi-material toolpath planning for tissue scaffolds with hollowed features

    Get PDF
    This paper presents a new multi-material based toolpath planning methodology for porous tissue scaffolds with multiple hollowed features. Ruled surface with hollowed features generated in our earlier work is used to develop toolpath planning. Ruling lines are reoriented to enable continuous and uniform size multi-material printing through them in two steps. Firstly, all ruling lines are matched and connected to eliminate start and stops during printing. Then, regions with high number of ruling lines are relaxed using a relaxation technique to eliminate over deposition. A novel layer-by-layer deposition process is progressed in two consecutive layers: The first layer with hollow shape based zigzag pattern and the next layer with spiral pattern deposition. Heterogeneous material properties are mapped based on the parametric distances from the hollow features

    Efficient Direct Slicing Of Dilated And Eroded 3d Models For Additive Manufacturing: Technical Report

    Get PDF
    In the context of additive manufacturing we present a novel technique for direct slicing of a dilated or eroded volume, where the input volume boundary is a triangle mesh. Rather than computing a 3D model of the boundary of the dilated or eroded volume, our technique directly produces its slices. This leads to a computationally and memory efficient algorithm, which is embarrassingly parallel. Contours can be extracted under an arbitrary chord error, non-uniform dilation or erosion are also possible. Finally, the scheme is simple and robust to implement

    An Interactive Product Customization Framework for Freeform Shapes

    Get PDF
    Additive Manufacturing (AM) enables the fabrication of three-dimensional (3D) objects with complex shapes without additional tools and refixturing. However, it is difficult for user to use traditional computer-aided design tools to design custom products. In this paper, we presented a design system to help user design custom 3D printable products on top of some freeform shapes. Users can define and edit styling curves on the reference model using our interactive geometric operations for styling curves. Incorporating with the reference models, these curves can be converted into 3D printable models through our fabrication interface. We tested our system with four design applications including a hollow-patterned bicycle helmet, a T-rex with skin frame structures, a face mask with Voronoi patterns, and an AM-specific night dress with hollow patterns. The executable prototype of the presented design framework used in the customization process is publicly available

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Using dexels to make hollow models for rapid prototyping

    No full text
    This paper presents a simple algorithm for hollowing out a solid CAD model. The algorithm employs voxel elements to do the hollowing. Instead of performing three-dimensional Boolean operations on the solid CAD model, one-dimensional Boolean operations between the ray representations of the model and voxel elements are carried out. The ray representation of the hollowed model in turn, produces the direct slice files as output to the rapid prototyping machine. In order to satisfy strength considerations, square and honeycomb structures are formed in the hollowed object. © 1998 Elsevier Science Ltd. All rights reserved.link_to_subscribed_fulltex

    Process parameter optimization for direct metal laser sintering (DMLS)

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore