12 research outputs found

    A continues multi-material toolpath planning for tissue scaffolds with hollowed features

    Get PDF
    This paper presents a new multi-material based toolpath planning methodology for porous tissue scaffolds with multiple hollowed features. Ruled surface with hollowed features generated in our earlier work is used to develop toolpath planning. Ruling lines are reoriented to enable continuous and uniform size multi-material printing through them in two steps. Firstly, all ruling lines are matched and connected to eliminate start and stops during printing. Then, regions with high number of ruling lines are relaxed using a relaxation technique to eliminate over deposition. A novel layer-by-layer deposition process is progressed in two consecutive layers: The first layer with hollow shape based zigzag pattern and the next layer with spiral pattern deposition. Heterogeneous material properties are mapped based on the parametric distances from the hollow features

    An Interactive Product Customization Framework for Freeform Shapes

    Get PDF
    Additive Manufacturing (AM) enables the fabrication of three-dimensional (3D) objects with complex shapes without additional tools and refixturing. However, it is difficult for user to use traditional computer-aided design tools to design custom products. In this paper, we presented a design system to help user design custom 3D printable products on top of some freeform shapes. Users can define and edit styling curves on the reference model using our interactive geometric operations for styling curves. Incorporating with the reference models, these curves can be converted into 3D printable models through our fabrication interface. We tested our system with four design applications including a hollow-patterned bicycle helmet, a T-rex with skin frame structures, a face mask with Voronoi patterns, and an AM-specific night dress with hollow patterns. The executable prototype of the presented design framework used in the customization process is publicly available

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Efficient Direct Slicing Of Dilated And Eroded 3d Models For Additive Manufacturing: Technical Report

    Get PDF
    In the context of additive manufacturing we present a novel technique for direct slicing of a dilated or eroded volume, where the input volume boundary is a triangle mesh. Rather than computing a 3D model of the boundary of the dilated or eroded volume, our technique directly produces its slices. This leads to a computationally and memory efficient algorithm, which is embarrassingly parallel. Contours can be extracted under an arbitrary chord error, non-uniform dilation or erosion are also possible. Finally, the scheme is simple and robust to implement

    A Parallel Feature-preserving Mesh Variable Offsetting Method with Dynamic Programming

    Full text link
    Mesh offsetting plays an important role in discrete geometric processing. In this paper, we propose a parallel feature-preserving mesh offsetting framework with variable distance. Different from the traditional method based on distance and normal vector, a new calculation of offset position is proposed by using dynamic programming and quadratic programming, and the sharp feature can be preserved after offsetting. Instead of distance implicit field, a spatial coverage region represented by polyhedral for computing offsets is proposed. Our method can generate an offsetting model with smaller mesh size, and also can achieve high quality without gaps, holes, and self-intersections. Moreover, several acceleration techniques are proposed for the efficient mesh offsetting, such as the parallel computing with grid, AABB tree and rays computing. In order to show the efficiency and robustness of the proposed framework, we have tested our method on the quadmesh dataset, which is available at [https://www.quadmesh.cloud]. The source code of the proposed algorithm is available on GitHub at [https://github.com/iGame-Lab/PFPOffset]

    Process parameter optimization for direct metal laser sintering (DMLS)

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Smooth Subdivision Surfaces: Mesh Blending and Local Interpolation

    Get PDF
    Subdivision surfaces are widely used in computer graphics and animation. Catmull-Clark subdivision (CCS) is one of the most popular subdivision schemes. It is capable of modeling and representing complex shape of arbitrary topology. Polar surface, working on a triangle-quad mixed mesh structure, is proposed to solve the inherent ripple problem of Catmull-Clark subdivision surface (CCSS). CCSS is known to be C1 continuous at extraordinary points. In this work, we present a G2 scheme at CCS extraordinary points. The work is done by revising CCS subdivision step with Extraordinary-Points-Avoidance model together with mesh blending technique which selects guiding control points from a set of regular sub-meshes (named dominative control meshes) iteratively at each subdivision level. A similar mesh blending technique is applied to Polar extraordinary faces of Polar surface as well. Both CCS and Polar subdivision schemes are approximating. Traditionally, one can obtain a CCS limit surface to interpolate given data mesh by iteratively solving a global linear system. In this work, we present a universal interpolating scheme for all quad subdivision surfaces, called Bezier Crust. Bezier Crust is a specially selected bi-quintic Bezier surface patch. With Bezier Crust, one can obtain a high quality interpolating surface on CCSS by parametrically adding CCSS and Bezier Crust. We also show that with a triangle/quad conversion process one can apply Bezier Crust on Polar surfaces as well. We further show that Bezier Crust can be used to generate hollowed 3D objects for applications in rapid prototyping. An alternative interpolating approach specifically designed for CCSS is developed. This new scheme, called One-Step Bi-cubic Interpolation, uses bicubic patches only. With lower degree polynomial, this scheme is appropriate for interpolating large-scale data sets. In sum, this work presents our research on improving surface smoothness at extraordinary points of both CCS and Polar surfaces and present two local interpolating approaches on approximating subdivision schemes. All examples included in this work show that the results of our research works on subdivision surfaces are of high quality and appropriate for high precision engineering and graphics usage

    The evaluation of a novel haptic machining VR-based process planning system using an original process planning usability method

    Get PDF
    This thesis provides an original piece of work and contribution to knowledge by creating a new process planning system; Haptic Aided Process Planning (HAPP). This system is based on the combination of haptics and virtual reality (VR). HAPP creates a simulative machining environment where Process plans are automatically generated from the real time logging of a user’s interaction. Further, through the application of a novel usability test methodology, a deeper study of how this approach compares to conventional process planning was undertaken. An abductive research approach was selected and an iterative and incremental development methodology chosen. Three development cycles were undertaken with evaluation studies carried out at the end of each. Each study, the pre-pilot, pilot and industrial, identified progressive refinements to both the usability of HAPP and the usability evaluation method itself. HAPP provided process planners with an environment similar to which they are already familiar. Visual images were used to represent tools and material whilst a haptic interface enabled their movement and positioning by an operator in a manner comparable to their native setting. In this way an intuitive interface was developed that allowed users to plan the machining of parts consisting of features that can be machined on a pillar drill, 21/2D axis milling machine or centre lathe. The planning activities included single or multiple set ups, fixturing and sequencing of cutting operations. The logged information was parsed and output to a process plan including route sheets, operation sheets, tool lists and costing information, in a human readable format. The system evaluation revealed that HAPP, from an expert planners perspective is perceived to be 70% more satisfying to use, 66% more efficient in completing process plans, primarily due to the reduced cognitive load, is more effective producing a higher quality output of information and is 20% more learnable than a traditional process planning approach

    Multi-Agent Modeling for Integrated Process Planning and Scheduling

    Get PDF
    Multi-agent systems have been used for modelling various problems in the social, biological and technical domain. When comes to technical systems, especially manufacturing systems, agents are most often applied in optimization and scheduling problems. Traditionally, scheduling is done after creation of process plans. In this paper, agent methodology is used for integration of these two functions. The proposed multi-agent architecture provides simultaneous performance of process planning and scheduling and it consists of four intelligent agents: part and job agents, machine agent, and optimization agent. Verification and feasibility of a proposed approach is conducted using agent based simulation in AnyLogic software
    corecore