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Summary 
 
Compared with traditional material subtractive manufacturing technologies, rapid 

prototyping is a layer-based material additive process and can produce a 3-D freeform 

object with a CAD-defined geometric model directly. It offers rapid, cost-effective 

and low-volume manufacturing of physical parts. As one of the advanced rapid 

prototyping and manufacturing processes, the direct metal laser sintering (DMLS) 

process gives designers the possibility to build parts of almost any complexity in a 

wide range of metallic materials. However, as a relatively new technique, it is still in 

the development stage as the resulting properties of the sintered metallic parts are not 

yet strong enough for many industrial applications.  

 

The aim of this research is to improve the overall performance of the DMLS process 

by optimizing the control of process parameters that have very strong influence on the 

quality of the built part. An intelligent parameter selection (IPS) system has been 

implemented involving artificial neural network, design of experiment (DOE), and 

multi-objective optimization. The set of process parameters can be determined 

according to different requirements using the IPS system. A test part was built to 

verify that the IPS optimization strategy is satisfactory in achieving the better part 

quality. 

 

The sintered material is known to be anisotropic because of its dependency on the 

hatch direction and part orientation. Besides the direction dependency, the properties 

of the material in each layer are also not homogenous. The length of the hatch line is 

one significant factor that affects the quality of the final part. Short hatch length and 

its corresponding short scanning time result in material heterogeneity in the part, 
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which has a negative effect on the part quality because the hatch line changes with the 

variation of the 2D-layer geometric shapes. The negative effect of short hatch lines on 

part accuracy and mechanical properties was quantitatively analyzed with a designed 

experimental method. A layer-based hatch optimization method using a genetic 

algorithm (GA) approach has been developed to determine the hatch direction with 

the minimum number of short hatch lines. A rotor shade model was built with the 

optimized hatch direction to demonstrate the effectiveness of the proposed method.  

 

To further reduce the effect of the residual short lines, a speed compensation (SC) 

method that includes experimental data collection method and statistical analysis was 

developed. Based on the SC method, the negative effect of the short hatch lines can be 

reduced significantly. It improves the part homogeneity effectively and makes further 

quality improvement.  
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Chapter 1  
 
Introduction 
 
 
 
The manufacturing industry is always looking for ways to improve production while 

reducing cost. Traditional material subtractive manufacturing technologies such as, 

milling, tapping, turning, etc. create 3D physical models by removing material using 

cutting tools. The movement of the cutting tools is manually controlled by the 

machinist. With the rapid development of CAD/CAE technology since early 70’s, 

automated manufacturing processes with numerical control machine tools have 

become possible. The emergence of Computerized Numerical Control (CNC) and 

High Speed (HS) milling technologies reduce the process time and hence significantly 

increase the productivity. However, as a mature technology, subtractive 

manufacturing still has some disadvantages due to its working principle. One major 

disadvantage is the dependence on the geometric complexity. Features such as small 

holes inside a block are hard to manufacture due to the process constraints, i.e. the 

interference between the cutting tool and part.  Additionally when the sample size is 

small, the time for process planning and NC programming can constitute a significant 

portion of the time needed to manufacture the part. 

 

Unlike traditional subtractive machining processes, Rapid Prototyping (RP) (also 

termed as Layered manufacturing (LM) or Solid Freeform Fabrication (SFF)) is a 

material additive manufacturing process. It is defined as a group of techniques used to 

quickly fabricate prototypes or assembly models using 3-D computer aided design 

(CAD) data. It builds parts using a layer fabrication process, i.e. thin layers of 
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material are deposited/solidified, intricately, one on top of another. The layer 

information comes from 2-D cross sections of a 3-D CAD model. The fabrication 

process repeats, from bottom to top, until the part is completed. This technique 

permits the construction of literally any shape that can be modeled on a CAD system, 

including geometric shapes that cannot be formed using conventional techniques. RP 

technology brought many benefits for the product design and development. It 

simplified the process greatly compared with the traditional molding method. Parts 

are being produced with short lead-time and minimal set-up in a wider range of 

materials. Because of these special advantages, rapid prototyping technologies got a 

rapid growth since early 90s. Many new RP technologies have been introduced and 

the application of RP technologies has become wider and wider. 

 

As one of the rapid prototyping processes, the selective laser sintering (SLS) 

technique builds prototype parts by depositing and melting powder material layer by 

layer. Although it is a relatively new technology, the RP based SLS process 

challenges the traditional material removal processes.  

 

1.1 Direct Metal Laser Sintering (DMLS) Process 

One ultimate goal in RP technology development is to build 3-D physical models 

directly from metallic powder. The SLS process is one of the RP methods that have 

potential to create metallic prototypes. Depending on the application, the metallic 

powder can be melted directly to build functional prototypes. There are two different 

metal sintering methods proposed based on SLS technologies: indirect laser sintering 

and direct laser sintering. Indirect laser sintering does not have wide industrial 
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applications due to its relatively low-density parts and the necessity of post-

processing.  

 

Direct Metal Laser Sintering (DMLS) is a new laser-based Rapid Tooling and 

Manufacturing (RTM) process developed jointly by the Rapid Product Innovations 

(formerly Electrolux Rapid Development, Rusko, Finland) and EOS GmbH (Munich, 

Germany). Besides the ability to sinter plastic or sand materials, DMLS can also 

process metallic powder directly. The feasibility of producing metallic parts directly 

by SLS has been demonstrated using various metallic material systems. Similar to 

SLS, the basic principle of DMLS is to fabricate near net-shape metallic parts directly 

in a single process, accomplished by using a high-power laser to sinter special non-

shrinking steel- or bronze-based metallic powders layer by layer. The DMLS process 

uses liquid-phase sintering to bind metallic particles together and is a strong contender 

to SLS to further advance the application of RP in the manufacturing field. Metallic 

parts serving as a direct function or tooling prototype have wider applications 

compared with the typical SLS parts made of plastic or sand. 

 

As in the case of a typical RP process, to create a 3-D physical part by the DMLS 

process, a digital model is first created with the help of a CAD system. After that it 

can be built automatically from the exported 3-D model file of the CAD system 

(normally in .STL format). The whole process can be completed in a few days, hence 

improving the product development time significantly. There are two stages (Figure 

1.1) that include the data preparation stage and the part building stage in the whole 

procedure. The data preparation stage is the digital treatment process that slices the 3-

D model into 2-D layer model. The second stage is the actual part fabrication using 
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the machine. Some process parameters that have close relationship with the final part 

quality need to be identified.  

Figure 1.1 Part fabrication stages from 3-D digital model to physical part 

 

1.1.1 Data preparation  

In the first stage, the original 3-D CAD model is sliced into a set of parallel layers 

filled by hatch lines. The layer information is then used to drive the machine directly. 

There are normally three sub-stages in the data preparation stage, and these are 

described in the following sub-sections: 

 

 

1.1.1.1 Build the CAD model 

Data preparation stage 

3-D digital model 3-D .STL model 2-D layer model 

3-D physical part built by DMLS 
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The initial purpose of RP techniques is to rapidly create the concept prototype in the 

early design stage of the product development. Firstly a 3-D model is designed with a 

CAD system.  

 

1.1.1.2 Triangulation of the object 

The surface of the model is represented by a set of small triangles. To record the 

information of these triangles, the standard STL file format is adopted. Because STL 

files use planar elements, they cannot represent curved surfaces exactly. Increasing the 

number of triangles improves the approximation, but at the cost of larger file size.  

 

1.1.1.3  Transition of 3-D models into 2-D layer models 

The STL model is sliced into a series of cross-sectional layers. Each layer is recorded 

as a machine-readable data file with information on the contour and internal section. 

The internal section of each layer is filled by a specific scanning pattern.  

 

1.1.2 Part building  

In this second stage, a laser is controlled to selectively sinter layers of material 

continuously to create the 3-D physical model (Figure 1.2). A metallic powder system 

is equipped with the powder supply cylinder filled up with two kinds of mixed 

metallic components. The powder is provided to the working cylinder in a thin layer 

of a fixed thickness. After that the powder surface in the working cylinder will be 

scanned with a high-energy CO2 laser system according a definite pattern. The layer 

sintering process is repeated till the whole part is created.  



Chapter 1 Introduction 
 
 

 6

 

 

 

 

 

 

 

Figure 1.2 Part building of DMLS 

 

1.2 Process Parameters of DMLS 

Different process parameters will affect the sintering quality and finally affect the 

quality of part. Usually, the following properties of the built part are the primary 

concern to the user: 

• Dimensional accuracy 

• Mechanical strength 

• Processing time  

• Surface roughness  

• Cost  

 

The DMLS process is characterized by some important process parameters that 

determine the quality of the sintering part. 

 

 

 

 

CO2 laser 
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cylinder 

Working 
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• Part orientation 

The orientation of 3-D digital model is defined as the normal direction of sliced layers. 

Part orientation is important because it greatly affects most of the final properties.  

 

• Scan path pattern 

The scan paths are important to the final sintering quality. Geometrically, two popular 

path patterns are widely used in RP (Figure 1.3). One is a contour (spiral) path pattern 

that comprises of a set of contours parallel to the layer boundary with different offset 

values. The other is a parallel path pattern that comprises of a series of parallel hatch 

lines along a fixed direction.  

The study in this thesis is derived based on the latter path pattern because the parallel 

path pattern is simpler to implement hence more popular. 

 

Figure 1.3 (a) Spiral path pattern and (b) parallel path pattern 

 

 

 

 

(a) (b) 

Boundary 

Scan paths 
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• Offset and scaling 

In the SLS process, a focused laser beam is delivered onto the powder (sand, plastic, 

metal, etc.), to heat and melt the powder. The material is combined together and the 

model is built layer by layer. But when the hot part cools down, shrinkage is 

inevitable. In addition, the finite width of the laser beam causes material to fuse 

outside the desired part boundaries. In order to build parts with high accuracy, it is 

necessary to scale the 2D layer files to compensate shrinkage and offset 2D layer file 

to compensate the beam diameter. So far, some different offset methods have been 

used such as dihedral offset, normal offset and constant offset. The dihedral offset has 

been adopted in the system because the dihedral offset method is more accurate than 

the others (Beaman, 1997).  

 

• Hatch space  

Hatch space is the distance between two neighboring hatch lines. It decides the beam 

overlap area of continually sintering hatch lines that is relevant to the energy 

distribution. 

 

• Layer thickness 

Layer thickness has a close inverse relationship with the total processing time. It is the 

most important factor when the processing time is concerned more than other 

resulting properties. The strength of the part, which is primarily a function of 

fractional density (or porosity) (German, 1994), has a reverse trend with layer 

thickness. Thickness also has a close relationship with the surface quality. The stair-

case error that influences the surface quality is unavoidable when using the finite 

layer thickness to laminate parts. 
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• Scan speed and laser power 

Before the fabrication, two important process parameters, scan speed and laser power, 

need to be decided based on the laser system and powder material properties. The 

presence of the liquid phase results in rapid sintering since mass transport can occur 

by liquid flow and particle rearrangement (Agarwala et al. 1995). The energy needed 

to melt the metallic powder is much more than that needed to melt polymer powder, 

which is often used in the SLS process. Therefore, high laser power and slow scan 

speed are normally used in the metal sintering. Normally, a higher laser power and 

slower scan speed also bring higher part strength because more energy is absorbed by 

the loose metallic powder. It results in a higher density in the built part. But over-

sintering will occur when the energy is too high. The resulting properties will then 

decrease sharply. The higher laser energy will bring a larger fused zone each time but 

will affect the part accuracy. In general, the sintering layer surface roughness will 

increase with increasing laser scan speed (Laoui et al. 1998). Therefore, it is important 

to make a trade-off between the scan speed and laser power setting.  

 

1.3 Research Scope 

Currently, rapid prototyping has taken its place alongside CAD software, CNC 

milling, injection molding and electrical-discharge machining as an indispensable tool 

in the process of design and manufacturing the world’s product (Wohler, 2001). As 

one of the important technologies that have the potential to build metallic parts 

directly, direct metal laser sintering technology is an important research field to carry 

RP technologies forward into the realm of custom manufacturing. 
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Although DMLS technology can bring about great benefits, the sintered part quality is 

still not good enough to produce an accurate and dense part. Improvement in the final 

sintering quality is widely expected in industry. There is still much research work to 

improve the performance of RP. The research scope proposed in this thesis focuses on 

the DMLS process parameter issues. Based on the previous work, an experimental 

DMLS machine was developed for research on the process. 

 

Process parameters are the key factors to control the final properties effectively. As 

discussed earlier, certain process parameters determine efficiency, economy and 

quality of the whole sintering process. Therefore, correct setting and control of these 

parameters is a primary requirement for successful application. Based on this, the 

research proposed in this thesis is focused on optimizing the key controllable 

parameters to achieve better performance of the DMLS process. Specifically, this 

research focuses on the following issues: 

 

1) Analyze the effect of different process parameters on the resulting properties. 

Several experiments are conducted for this analysis. 

 

2) Develop an intelligent system based on the Feed-forward Neural Network (NN) 

with backpropagation (BP) learning algorithm to predict the resulting properties of the 

laser-sintered metallic parts built by different process parameter settings. Compared 

with traditional approaches, the NN approach can provide a good mapping between 

inputs and outputs without the aforementioned assumptions and simplifications. 

Moreover, the NN model is easier to build. These advantages make it a powerful tool 

to predict complicated process relationships. It is invaluable for users to search for 
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some specific properties and the system automatically determines the most suitable 

parameter setting to achieve desired outcome with good accuracy. 

 

3) Measure the quantitative relationship between material heterogeneous and 

anisotropic properties, and the part quality by designing an experimental method. 

Material anisotropic and heterogeneous properties cause the sintering quality not 

uniform and distortion and warpage of the sintered part may occur in such case. In 

this study, the factors affecting the material heterogeneity and anisotropy are analyzed. 

With the understanding of the effect of material heterogeneity and anisotropy on the 

final quality, there can be further control of this effect. 

 

4) Control and minimize the effect due to the heterogeneity caused by the different 

geometric shapes of each layer. Two methods are presented: i) a hatch direction 

optimization method based on a proposed genetic algorithm (GA) approach to reduce 

the short hatch-lines, and hence reducing its negative effect. Because GA does not 

require derivative information or other auxiliary knowledge and only the objective 

function and corresponding fitness levels that influence the search (Zalzala and 

Fleming, 1997), it is suitable for use to solve this optimization problem. ii) a speed 

compensation (SC) algorithm developed to give more homogeneity properties for 

sections with hatch lines of different lengths. By changing the sintering speed based 

on the length of the hatch line, the material property can be more homogeneous. With 

the optimization methods, the material can be made more homogeneous and the 

properties become more controllable.  

  

1.4 Thesis Outline 
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The remaining of this thesis is organized as follows: 

Chapter 2 is a literature review on the research work related to sintering quality 

improvement by optimization of process parameters. 

 

Chapter 3 introduces the developed experimental DMLS system. Important errors 

caused by the laser system are identified and the methods to calibrate them are given 

where error effects are serious.   

 

Chapter 4 presents the important resulting properties of DMLS process. The effects of 

process parameters on them are identified through experimental methods. 

 

Chapter 5 proposes a generic intelligent parameter selection (IPS) system for the 

DMLS process. The IPS system can capture the causal and inferential knowledge 

about the relationships between the process parameters and resulting properties to 

provide expert-level recommendations during the parameter selection process. The 

purpose of building such a parameter optimization model is to control the quality of 

the final part and cater to different requirements of the users. By adjusting an 

identified set of process parameters, the quality of the DMLS part can be 

appropriately controlled. 

 

Chapter 6 discusses the effect of different geometric shapes on the final quality. The 

2-D geometry can be denoted as a batch of hatch lines. Local regions in each 2-D 

layer with different hatch line lengths have an effect on the material heterogeneity and 

hence, a negative influence on the sintering performance. 
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Chapter 7 proposes an optimization procedure based on GA algorithm. The GA-based 

hatch direction optimisation method can select the hatch direction that reduces the 

effect of short hatch lines effectively hence improves the homogeneity. 

 

Chapter 8 focuses on a new speed compensation algorithm to improve the part 

homogeneity. Through controlling the scan speed, the negative neighboring effect can 

be compensated and consequently control the percent shrinkage to stay at a similar 

level with the level in the ideal mode. 

   

Chapter 9 concludes and summarizes the contributions of the research presented in 

this thesis. Some suggestions of future work are also proposed.  
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Chapter 2  

Literature Review 

 

Direct metal laser sintering is designed to manufacture small batches of accurate and 

structurally sound 3-D metallic parts. Some process parameters have significant 

influence on the final properties of the part. These are shown in Figure 2.1 where a 

line with an arrow is used to connect each of these parameters to the property that it 

has a strong influence.  

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Relationship between process parameters and resulting properties in 
DMLS 
 

To achieve the desired properties of the final part, the appropriate process parameters 

must be set. For this purpose, many researchers aimed to improve these properties by 
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studying the effect of process parameters on them. Due to the complicated 

realtionship, most of the research efforts only focus on one or a few resulting 

properties. The reported works are highlighted below. 

 

2.1 SLS Process Thermal Modeling  

As a rapid liquid sintering process, densification is performed at a high temperature to 

produce transient liquid sintering of the part to near full density with desired shape 

and dimensional tolerances. The liquid phase exist time and the wetting ability are 

critical to the final sintering properties. Temperature is believed the most important 

factor for the liquid phase exist time and the wetting ability. Increasing the sintering 

temperature leads to a larger amount of liquid phase formed and with a low viscosity 

of the liquid flowing. Extending the sintering time will cause more sufficient flow of 

the liquid. Hence, the history of the sintering temperature is critical for the final 

sintering quality.  When the material system is decided, the sintered powder 

temperature history and the temperature distribution in the whole powder bed are 

determined by the energy input and the rate of heat losing. During the sintering 

process, the powder temperature will increase sharply when the laser scans them by 

absorbing the energy from laser. Besides the material properties, the laser energy 

absorbed is controlled by two important process parameters: scan speed and laser 

power. When the laser beam passes the powder, the temperature will decrease due to 

the heat loss through the powder bed and atmosphere environment. The heat transfers 

to the atmosphere mainly by convection and radiation at the surface of the powder bed 
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as well as conduction into the surrounding powder bed. The loss of the heat is closely 

related with the whole powder bed temperature distribution decided by hatch space, 

layer thickness, laser power and scan speed. 

To better understand the sintering mechanism with the further effect on the sintering 

quality, several researchers have attempted to build a reasonable thermal model to 

denote the heat transfer during the SLS process. Based on that thermal model, 

numerical modeling can be created to investigate the temperature field of powder bed. 

 

Thermal function is built by considering the energy input from the laser and loss by 

heat transfer. In the earlier stage, the sintering material is mainly focused on 

amorphous powders such as polycarbonate bonded by fluid flow that does not incur a 

phase change hence with a near zero latent heat. Works reported (Nelson 1993, 

Berzins et al., 1996, Childs et al., 1997, Beaman, 1995; Sun and Beaman, 1995; 

Williams et al., 1996) analyzed the thermal models with the sintering of amorphous 

powder. In their models, the heat source input from laser sintering is calculated as a 

function of the laser position and the power distribution of the laser beam. Heat losses 

at the surface are considered as results of conduction, radiation and convection. 

 

 Later works focus on the crystalline polymer such as nylon are reported (Gibson and 

Shi, 1997, Tontowi and Childs, 2001, Kandis and Bergman, 1997, Nikolay et al., 

2003). Because the crystalline polymer has a low melting temperature, the effect of 

latent heat is considered in the thermal model.  
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For the two-phase metallic powder system, only the component with 

low-melting-point melts to infiltrate and wet the high-melting-point solid powder. 

Unlike the single-phase sintering, the heat transfer becomes more complicate. In this 

situation, the melting and resolidification phenomena accompanying with releasing 

very large latent heat have a significant effect on the thermal distribution of the 

powder bed. Besides the latent heat, the movement of the two different components 

during the sintering also has a significant effect on the whole thermal process. Bunnell 

(1995) and Manzuk et al. (1996) proposed the use of powder mixture containing two 

powders with significantly different melting point in which only the low melting point 

powder melts. But the effect of both liquid and solid velocities on the heat transfer is 

ignored. A more comprehensive model is proposed by Zhang et al. (2000). The liquid 

flow driven by capillary and gravity forces and the solid particle velocity induced by 

shrinkage of the powder bed are taken into account in Zhang’s model. The predicted 

results match well with the experimental results obtained with nickel braze and AISI 

1018 steel powder. 

 

Based on the developed thermal models, some works were done to predict the part 

density. Nelson et al. (1993) predicted density of a sintered polycarbonate part, using 

1-D finite element and 1-D finite difference methods. Bugeda et al, (1999) reported a 

2-D model applied to ABS material. Tontowi and Childs (2001) predicted the part 

density at various powder bed temperatures applied on nylon 12.  
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2.2 Part Accuracy  

The ability of a Solid Freeform Fabrication (SFF) process to produce accurately shaped 

geometry is critical to its overall acceptance in the market place (Beaman, 1997). To 

achieve an accurately built part is a time-consuming and complicated task because 

many factors can affect the final dimensional accuracy. Some researchers have 

focused their attentions on one or several of the following factors. 

  

• Pre-processing error 

Rapid prototyping of 3-D models are performed by generating and stacking in two 

dimensional (2-D) cross sections of uniform thickness. In rapid prototyping, the 

fabricated part has a quantification error when the height is not a multiple of the finite 

layer thickness. Hence, adaptive slicing algorithms (Frank and Fadel 1995; Kamesh et 

al. 1998) have been developed to reduce these kinds of slicing errors. To process the 

2-D layer data, 3-D model is first converted to a faceted model (in STL format). This 

incurs another pre-processing error during the tessellation of the faceted model when 

a sufficiently high tessellation resolution is used to meet the accuracy requirement. 

Some proposals using other data formats such as constructive solid geometry (CSG) 

and NURBS-based representations instead of the STL representation have been 

proposed (Rock, and Wozny, 1991; Guduri et al., 1993; Vuyyuru et al., 1994).  

 

• Machine errors 

Machine errors can be measured, appropriately calibrated and compensated. The 

effect of the overall system errors can be controlled to a reasonable scale.  
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• Random noise 

Besides the error factors mentioned above, the final part dimensions are not uniform 

in practice even when two processing environments are similar. It occurs due to the 

small fluctuation of process environment. This error is defined as the random noise 

and the relevant analysis has been provided by Jacobs (2000). 

 

• Material processing errors 

The dimensional errors arising from the material processing are the most complicated 

factors and have attracted much attention in RP research. In the SLS process, the 

temperature of part or all of the powder is raised above its softening (such as for 

plastic powder) or melting (such as for metallic powder) temperature to bond and 

solidify the particles during the laser sintering process. After the process, the sintered 

part shrinks as it cools. To compensate the effect of material shrinkage, the 2D-layer 

model needs to be scaled first. Besides these, an offset of the 2D-model is processed 

to compensate the effect of finite diameter of the laser beam spot. A simple method is 

to use a constant offset factor and scaling factor during the sintering process. Nelson 

et al. (1995) described an experimental method to build and measure a part model to 

confirm the values of scaling and offset compensation factors. Similar work is also 

reported by Wang (1999). But their models are based on a simple linear relationship 

between the nominal dimensions and the errors caused after sintering. Percentage 

shrinkages vary with different geometric shapes causing different accuracy errors in 

the whole part. But the effect from the different geometric shapes is however not 
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considered in the linear-fitting model. 

 

It is important to effectively analyze and compensate the effect of different geometric 

shapes to improve the dimensional accuracy of the entire part. Andre (1997) obtained 

experimental data for measuring shrinkage values of many different geometric shapes 

with a fixed parameter setting and then applied different shrinkage compensation 

factors to the CAD model for each section of a part. It is a tedious task especially for 

complex geometries that need plenty of experimental data. The results are also 

difficult to generalize when the process condition changes. The difficulty of using a 

relatively simplified method to denote the shape character based on the SLS process is 

another problem. The geometric reasoning becomes a very difficult task in the case of 

complex geometries. 

 

The final part accuracy is mainly influenced by the shrinkage of sintered material. The 

difference in the length of hatch lines filled in the different 2-D layered geometry 

causes uneven shrinkage rate. If the shrinkage rate is not uniform, the compensations 

become hard to implement. Additionally, the material warpage and distortion related 

to the inhomogeneous material shrinkage are other serious problems in the laser 

sintering process. Currently, none of the technologies has the capability to effectively 

avoid or control the heterogeneous effect caused by the variation of geometry shape. 
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2.3 Part Mechanical Strength  

Part mechanical property is an important resulting property of concern to users 

especially if they want to build functional prototypes by RP systems. Research works 

(Subramanian et al., 1994; Badrinarayan and Barlow, 1995; David and Richard, 1995; 

Gibson and Shi, 1997; Corbel et al., 1999; Ahn et al., 2002; Andrew and David, 2003 

etc.) have been done on the effect of different process parameters on part mechanical 

properties with different RP processes.  

 

For parts built by selective laser sintering (SLS), some models are created based on 

the understanding of the laser energy delivery system. Nelson (1993) constructs a 

physical model of the sintering process that relates the sintering depth and laser 

control parameters. In this model, the Andrew number (An) is proportional to the part 

strength and is shown to be a combination of the scanner parameter to yield:  

 

SpaceHatchSpeedBeam
PowerLaser

An
×

=         (2.1)

  

Nelson (1993) has shown that green strength of composite parts is related to the 

Andrew number. However, the equation achieved is based on the amount of the 

energy delivered to the surface where the energy lost though heat transfer is not 

considered. Williams et al. (1996) and Miller et al. (1997) developed the model by 

considering the effect of the period of time the powder cools. The change of vector 

length results in changes in the delay period between successive exposures. Besides 
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that, the amount of sintering that occurs and the final part strength are expected to be 

influenced by the number of laser exposures owing to an increase in the amount of 

overlap. The new model relates the number of exposures and the time of the delay 

period to the resulting part strength. By using regression models based on a batch or 

experimental results, the new model is given as: 

 

RateScanKAnKStrength ×−×= 21         (2.2) 

 

where the coefficient factors K1 and K2 can be calculated through statistic method 

based on the experimental results.Although the model considers the effect of heat 

transfer between scan lines, it is still hard to predict the strength in the 

geometry-complicated part because the time period between scan lines varied with the 

change of geometry shapes in each 2-D layer.  

 

Some works try to understand the relationship between different parameters and the 

mechanical strength through experimental methods on different material system.  

Badrinarayan and Barlow (1995) discussed the effect of vector length, bed 

temperature, polymer melt index and initial binder content on part strength and 

density by madding some test bars. Gibson and Shi (1997) investigated the influence 

of scan size, scan spacing, laser power, hatch direction and orientation on the 

mechanical properties of SLS process.  
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The length of the hatch line is an important factor found to be significant to affect the 

quality of the final part according to earlier studies (Richard, 1993; Badrinarayan and 

Barlow, 1995; Beaman, 1997). As the hatch length increases, the time delay between 

energy pulses increases thereby lengthening the cooling time and reducing 

over-sintering (Badrinarayan and Barlow, 1995). However, a short hatch length and its 

corresponding short scanning time results in heterogeneity in the material properties 

of the part. This unevenness affects the quality and mechanical strength of the parts 

built. Although many studies have been reported earlier, little work was done with a 

systemic research. 

 

Besides the effect of the sintering process in each 2-D layer, the sintering part is not 

isotropy because of the different build direction (orientation). Subramanian et al. 

(1994) discussed the anisotropy of green strength due to the selection of different 

orientations. Then David and Richard (1995) studied the relationship between the 

strength and part orientation by using the Tasi-Wu interactive tensor polynomial 

model (Tsai and Wu, 1971).  

 

2.4 Part Surface Roughness  

As an important issue affecting the part quality, surface roughness is most important 

when prototyping is used for casting. Two different types of surfaces are formed when 

the 3-D physical model is created. The first type of surface is created along the 

sintering direction by a continued accumulation of the 2-D contour of each layer and 

defined as contour accumulation surface in this study. Ideally, this type of surface is 
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smooth when the thickness of each layer is small enough. But because the existence 

of height of each layer, the surface smoothness when created initially in a CAD 

system will be broken. On sloping or curved surfaces, a stair-case error will appear. 

The most popular method to evaluate this stair-case effect is using the cusp height. It 

is defined as the maximum distance between the CAD model and the built layer 

measured along the surface normal.  

 

The negative stair-case effect is directly related to the layer thickness. Two methods 

are widely applied to minimize the stair-case effect in relation to the process 

parameter. The first one (Suh and Wozny, 1993; Dolenc and Makela, 1994; Kulkarni 

and Dutta, 1995; Tyberg and Bohn, 1998; Cormier et al. 2000) used the adaptive 

slicing method to adjust the thickness of each layer based on different geometrical 

features of the model. To reduce the staircase effect, the layer thickness should be 

reduced, but this will increase the part building time. The solution of this problem is 

to adaptively slice the model, so as to achieve a balance between the surface qualities 

and build efficiency. Another method is the orientation optimization method (Cheng et 

al. 1995; Frank and Fadel, 1995; McClurkin and Rosen, 1998; Ziemian and Crawn, 

2001). By optimizing an appropriate orientation, the specified accuracy can be 

attained with a minimized processing time. In some studies (Xu et al., 1997), these 

two methods are combined together.  

 

Another type of surface is the sintering layer surface of vertical with the Z-axis (as the 
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building direction). The surface roughness is determined by the sintering 2-D layer 

surface quality. For SLS process, most of the process parameters can affect the second 

type of surface quality. These process parameters include laser power, hatch spacing, 

scan pattern, layer thickness, hatch line length and part orientation. Laoui et al. (1998) 

analyzed the effect of laser scan speed, particle size and the powder content on the 

2-D surface roughness. Amol and Richard (2003) analyzed the effect of laser power, 

powder age, layer thickness, part orientation and the hatch line length on the surface 

quality based on the SLS process.  

 

2.5 Process Time  

Processing time is an important factor affecting the product cost. Several process 

parameters such as thickness, scanning speed, the orientation and hatch distance can 

affect the build time of the prototype significantly. Unlike the other properties, for 

processing time, there is normally a clear quantitative relationship with the parameters, 

so that a direct mapping function can be deduced based on different processes. There 

are two methods to estimate the processing time: based on equations derived as a 

statistic function of the total volume of the parts to be built (Kamash and Flynn, 1995) 

or a function of the total laser scan distance that the laser travels (Yu and Noble, 1993; 

Clemson Univ., 1994; Kechagias et al. 1997) 

 

2.6 Multi-objective Parameter Optimization System 

The developed thermal model provides a strong theoretical support for understanding 

of the sintering mechanism. But it is still hard to directly apply to predict the resulting 
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properties of the sintering part. To build the model, some assumptions are necessary 

to simplify the model. Many factors including the process parameters and material 

properties bring different effects on the thermal model and seriously limited the 

application of these models. In the current research, experimental methods are 

adopted to build the relationship between the process parameters and resulting 

properties directly. After the mapping relationship is built with the analysis of 

experimental result data, the parameter optimization becomes possible. 

 

Many goals such as dimension accuracy, mechanical strength, processing time, and 

surface roughness are the primary concerns to the users. Some of the important 

process parameters together could affect the resulting properties significantly. Very 

often, these goals do not necessarily result in a similar trend as the change in the 

process parameters. Inevitably, a fixed set of parameter values that can achieve the 

best outcome even for two of all desired properties inevitably do not exist. 

Traditionally, the way to solve this is to make a trade-off among these goals.  

Ahn et al. (2002) used a DOE approach to optimize some important process 

parameters with formulated rules. These guidelines are intended in improving the 

strength and accuracy of the parts made by the FDM machine. Through analysis of 

the energy delivered to the powder medium, Williams and Deckard (1998), studied 

the effects of selected parameters on the SLS process response (Williams and Deckard, 

1998). A model based on the physical principles involved, including sintering, heat 

transfer and thermal gradation was presented. McClurkin and Rosen (1998) have 
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proposed a method based on response surface methodology (RSM) and 

multi-objective decision support for co-relating the build goals to the build style 

variables for making build style decisions in stereolithography (SLA) process. RSM is 

a collection of mathematical and statistical techniques for building empirical models. 

Amol and Richard (2003) optimized the process parameters that are important in the 

SLS process with respect to a set of desired quality measures. The basis for the 

process is D-optimality criterion applied to a series of factorial experiments that 

capture empirically the relationship between the process parameters and part quality 

measures. Choi and Samavedam (2001) proposed an integration of the VP and RP 

techniques to create a modeling that accurately predicts the influence of the process 

parameters on the part quality. 

 

The way to solve this by making a trade-off among these goals may not be good 

enough under many different requirements requested by the customers. In fact, in 

different applications, the users are often more concerned with some of the resulting 

properties but ignore the rest. For example, if the prototype part is created mainly for 

design review, processing time and surface roughness will be given more attention; if 

it is for fit and assembly verification, the dimensional accuracy is more important; and 

if for limited functional testing, the mechanical strength could be the main property 

concerned. A good scenario is auto-selecting the process parameter setting to satisfy 

the various requirements for different users. This could make the RP applications 

more agile and acceptable.   
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There are several process parameters that significantly affect the different resulting 

properties. It is important to build a suitable model by creating a proper mapping 

between the parameters and properties. However, there still does not exist an 

intelligent system that can help the user select the correct process parameters for 

DMLS process based on their applications.  

 

2.7 Summary 

The literature review indicates that much research work has been attempted to 

improve the sintering quality by optimizing one or several important process 

parameters. However, the relationship between the process parameters and the 

resulting properties has not been totally understood especially for the metallic 

materials. To further improve the sintering quality, more research work should be 

done to satisfy the requirements from users and manufacturers.  
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Chapter 3  
 
Laser System Calibration 
 
 
3.1 Introduction  

As a promising RP process, DMLS has been investigated by several companies and 

institutions to further develop high-performance machine and corresponding materials 

for use. The RP group from the Mechanical Engineering Department of the National 

University of Singapore, in cooperation with Kinergy Pte. Ltd of Singapore has 

developed an experimental DMLS system. In order to commercialize the technology, 

A*STAR (Agent for Science, Technology & Research) in Singapore has provided 

financial support for the project. During this research, experiments on process 

parameters of DMLS based on the traditional SLS process were conducted at the 

developed DMLS machine (Figure 3.1). The corresponding machine structures, such 

as the motion system and working chamber, were designed to be able to work 

properly under a high temperature environment. A continuous-wave (CW) 200W 

SYNRAD (Synrad, 1999) 57-2 “DUO-LASE” CO2 (λ=10.6µm) laser is employed in 

this system to supply power to melt metallic powder in the sintering process. The 

laser features a near diffraction-limited beam of extremely high purity, resulting in a 

focused spot as small as 0.4mm when used with high quality, low F0 number focusing 

optics (SCANLAB, 1998). The optics on the laser assembly is permanently adjusted 

and the laser requires no field consumables or vacuum equipment. The focus distance 

of the lens is 375mm and the laser scan speed can be set up to 4000mm/s. A chamber 

with an atmospheric control, powder delivery system, supply cylinder and working 
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cylinder is used. To process the 3-D model into a machine-readable layer file hence 

using to control the system working in a proper sequence to fabricate the part, a 

software system was developed. Besides the normal function such as the slicing 

modules, system control module, it also allows the end user to adjust the part size, 

location and the orientation of the model before it is sliced and hatched. The system is 

more suitable for directly fabricating small-size metallic parts and can lead to a 

significant cost saving. 

 

Figure 3.1 The NUS-developed experimental DMLS system 

 

The most important part of the system is the laser system that affects the final part 

quality significantly. It is because the errors caused due to this system setup mainly 

come from the laser scanning system. Many important parameters are decided by the 

laser system such as laser power, scan speed, etc. To achieve good part quality, the 

laser system must be calibrated first. If the system error cannot be verified and 

adjusted to be a minimal value, errors will be accumulated and the final parts 
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accuracy is affect. A systematic method to analysis the effect of machine setup on the 

sintering accuracy is provided. 

3.2 Laser-scanning Path  

The laser-scanning path is realized by reflecting a laser beam through two rotating 

galvano-mirrors in the X and Y directions. The configuration and mechanism of the 

two galvano-mirror laser scanning system is shown in Figure 3.2. As a rotating 

motion system, the two galvano-mirrors scanning system has quite different 

characteristics from that of a linear-motion system in terms of its effect on the laser 

scan path. The movement of laser scan spot realized by the two galvano-mirrors can 

be described as follows:  

(1) A point on the surface of the Y mirror is set as the origin and the surface of 

platform is taken to be at a level where D (z=D) is the focus distance of the lens;  

(2) The distance between the centers of X and Y mirrors is taken to be e;  

 

Figure 3.2 Two galvano-mirrors laser scanning system 

D 
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(3) The projection angles of the beam on the XZ and YZ planes are xθ  and yθ  

respectively;  

(4) The travel length of the beam from the center of the X mirror to the focus point in 

XY plane is fr  which will be used for calculating the change of focal length.  
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Hence all x, y, rf can be described by angles xθ  and yθ . 
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From Equation (3.2), it can be seen that the position of the laser spot is determined by 

the rotating angles xθ  and yθ . The focus distance rf  is also changing according to 

various θ . In order to get the laser beam focused on a horizontal plane that represents 

the working surface, a F-Theta lens has been used in the machine. The F-Theta lens 

has a special optical design that allows different parts of lens to have different focus 

distance according to the entry angle of the laser beam. This allows the laser beam 

spot to be focused on a linear plane when the mirror is rotated with a slight error.  
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3.3 Position Definition 

The dimensions of the usable image field are determined by the size of the scan angle 

and the focal length of the objective. All x and y coordinates must be specified as 

signed 16-bit numbers  (i.e. as numbers between – 32768 and +32767, Figure 3.3) 

where the origin of coordinates is in the center of the image field. The ratio of a point 

coordinate in bits and the actual position of the point in millimeters is defined by the 

calibration factor, K. If the length of the vector from the target point to the origin is s, 

a calculated calibration factor K= 162 /s [bit/mm] is used. The maximum working 

length for the X and Y coordinate is equal to the division of 162  and the calibration 

factor K.  

 

Figure 3.3 Coordinate in the image field 

 

Accordingly, we can see that the Calibration Factor, K is a variable that affects the 

scanning accuracy of the laser system. Thus, to warrant the sintering accuracy, a 

method to calibrate the K value will be provided in section 3.6. 
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3.4 Control of the Scan Head and Laser  

A PC real-time control board was used to control the scan head and laser system. The 

driver of the board offers a set of commands for the scan head and laser control. 

These commands mainly include the laser move commands (jump and mark 

command) and the parameter setting commands (scan speed, scan power and delays). 

The detailed command format can be found in the manual (SCANLAB, 1998) of the 

scanning system. 

 

3.5 Working Plane Calibration 

In the DMLS process, a laser beam focused by a lens after reflection from the 

computer-controlled mirror system, sinters the powder material at the processing 

plane. The sintering effect is ideal only when the process plane is identical with the 

focal plane. To achieve the minimal size of beam spot located at the focal plane, the 

working plane should be calibrated to superpose with the focal plane (Figure 3.4). By 

adjusting the position of the laser system, the focus plane is moved to be identical 

with the working plane. 
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Figure 3.4 Schematic diagram of laser scanning for an incongruent working plane 

with focal plane 

 

 

Figure 3.5 Schematic diagram of process plane calibration 

 
To implement calibration, firstly, the working plane is calibrated to the horizon by a 

gradienter. It guaranties the parallelism of the process plane and the focal plane. Then 

the focus length should be accurately equal to the distance from the mirror to the 

working plane. The method to calibrate the process plane is shown in Figure 3.5. This 
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method uses laser vertically scanning a batch of single lines in a lean test paper. The 

width of the scan lines will change from broad to narrow and back to broad gradually. 

The horizontal plane that the narrow points belong to corresponds the focal plane. 

Adjusting the height of laser equipment can make the focal plane be identical with the 

process plane. 

 

3.6 Distortion Errors and Calibration 

The rotating motion of two mirrors and the F-Theta objective causes barrel-shaped 

distortions of the image field as shown in Figure 3.6 (SCANLAB, 1998). This 

distortion will obviously affect the shape and accuracy of the built parts and 

calibration is needed to eliminate this effect. Also when the laser scan angle becomes 

large, the surface and the laser will not be vertical. It makes the beam not round and 

the edge enlarged hence brings errors. Furthermore, some distortions are caused by 

the mirror and lens due to the part fabrication and configuration. All distortions and 

errors can be corrected and compensated by the software provided by the laser system 

vender.  

 

The principle of the correction software is based on Equation (3.2). The errors in x, y 

values are corrected by modifying the values of the rotating angles θx and θy. The 

operation of the correction software is described below:  

(1) Put a sheet of white paper on the working surface of the machine, use the laser 

scanning system and let the laser beam to draw a standard square (250×250 2mm ) on 

the paper; 

(2) The draught square may have a distortion, measure the biggest errors along the 

central lines of X, Y directions, and get the data of ∆x and ∆y (see Figure 3.7 (a));  
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(3) Input the ∆x and ∆y into the software, the software will automatically calculate the 

modifications for every point of the square, and correct the distorted square into the 

normal square (see Figure 3.7 (b)). 

After the correction, the distortion can be eliminated within the scanning area. 

 

Figure 3.6 Barrel-shaped distortions caused by laser scanning system  

 

Figure 3.7 Correction of the distortion caused by the laser scanning system 
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3.7 Calibration of the Field Calibration Factor K  

Usually the positions have small difference between the specific point and the actual 

laser scanning point. It is a common practice to recalibrate the field celibration factor 

K manually. 

 

The mirror’s tilt that determines the real scan length in the process image is calculated 

by a computer program. A calibration factor K is used to transfer the computer bit 

signs to the mirror’s tilt. The default value is defined as a rounded value, which is 

smaller but closer to the calculated value. To increase the accuracy, it is necessary to 

develop a method to calculate the actual K value from the experimental data.  

 

For current study, both Calibration Factors, for X and Y direction are investigated and 

optimized.  

 

The procedures for optimization of the calibration factor in the X direction, Kx are 

described below: 

• The single line scanned pattern is adopted. L is the set length and is the 

variable parameter in the experiment where L=10, 20, 30, 40, 50, 60, 70 and 

80mm. For each value of L, the appropriate lines of length L are scanned along 

the Y-axis (from –80 to 80mm) at a regular interval of 10mm.  

 

• Using the Deltronic® MPC-5 System (DELTRONIC, 1998) with an accuracy 

of ±0.001mm, the scanned lines are measured to obtain the measured length, 

L1 corresponding to their set length. Repeat step (a) and (b) for L=10, 20, 30, 

40, 50, 60, 70 and 80mm. 
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For optimization of Calibration Factor in the Y direction, Ky, the procedure listed 

above is repeated with the exception that the lines are scanned along the X-axis. All 

measurements were repeated three times to increase reliability of the result. 

 

With the optimized laser scanning parameters, it is possible to improve the laser 

scanning accuracy of the system through manipulation of the Calibration Factor, K. 

For this experiment, the optimum values of Kx and Ky are determined by using a 

statistical approach.  

 

The optimum value for Kx and Ky can be derived through the following relationship: 

 

L1
ave × K1= L × K             (3.3) 

where L1
ave:  average measured length 

L:  set length 

K:  calibration factor that is used before optimizing 

K1:  optimized calibration factor to be obtained  

 

The value of Kx and Ky before optimizing were 235 given by (SCANLAB, 1998). 

Using the formula and the original value of K, the individual value of Kx
1 and Ky

1 for 

each set length L and their corresponding average measured length L1
ave is calculated.  

 

The obtained values of Kx
1 and Ky

1 by performing similar calculations for all values of 

L and their corresponding L1
ave are given in Appendix. Finally, an average value of 

Kxave
1 and Kyave

1 is obtained by taking the average of all the Kx
1 and Ky

1 values (see 

appendix). 



 
Chapter 3 Laser System Calibration 
 

 40

3.8 Identify the Delay Value 

When the scan direction or scan speed changes, the mirrors on the galvanometer 

scanner have to be accelerated up or decelerated down to the defined marking speed 

and direction. If the laser keeps working at that situation, laser intensity will vary and 

affect the homogenous sintering results. To make sure that laser scanning is not 

working under these situations, the delay function will be added automatically. But 

the value of laser delay time needs to be set carefully and some errors will be brought 

with the scan delay setting. The negative effects caused by scan delay include: 

• Inducing the shape and dimensional error caused by the laser delay 

• Increasing the process time 

For the DMLS process considered, two kinds of delay formats are important. The first 

kind is the delay relative to the time of laser on/off: LaserOn and LaserOff delay.  

Another kind is the delay relative with the command of laser mark/jump: MarkDelay 

and JumpDelay.   

3.8.1 LaserOn/LaserOff delay 

When the scan head has to execute a marked command, the mirrors on the 

galvanometer scanners have to be accelerated up to the defined marking speed. To 

make sure the laser is not switched on before the mirrors reach a certain angular 

velocity to guarantee the laser scanning the vectors with constant velocity, a LaserOn 

delay should be inserted automatically before the scan start. Similarly, a LaserOff 

delay is needed at the end of the marking. Because the processing time of each 

marking is the time of the laser moving from the start point to the end point, which 

has no relationship with the time of laser power on/off; this kind of delays do not 

affect the whole processing time. But the introduction of these two delays brings a 

position error such that the sintering of the start point and the end point will be 
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delayed. The time of the delay cannot be too short because burn-in effect will happen 

and cause over-sintering at the start point and end point. The rule to set the correct 

LaserOn/Off delay will be the minimal value that does not cause a burn in effect at the 

scanning speed. For the metal sintering process, the default sintering speed is 

100mm/s, which requires at least 30 sµ LaserOn/Off delay by experimental 

verification. It is the time period that the laser accelerates/decelerates from 0 to 100 

mm/s. By simply assuming the laser is accelerated lineally, the dimensional errors 

brought by the delay can be calculated by the following equations: 

 

)(0015.0

2/)(1030)/(100
2

 error position point Start 6

mm

ssmm
Delayv on

=

××=
×

= −

  (3.4) 

)(0015.0

2/)(1030)/(100
2

error position point  End 6

mm

ssmm
Delayv off

−=

××=
×

−= −

  (3.5) 

The length error ≈  Start point position error+ End point position error ≈0 (3.6) 

 

The position error with a 0.0015 mm is acceptable because the dimensional error 

caused by the material shrinkage normally is more than 0.1 mm. 

 

3.8.2 JumpDelay/MarkDelay 

Before the exchange to mark and jump command, the mirrors will be accelerated up 

to the programmed jumping speed or decelerated down to the programmed 

decelerated speed. The speed and direction change need a certain setting time to 

compensate the lag. For this purpose, another group of delays named JumpDelay and 

MarkDelay is used. A non-sufficient time for the JumpDelay brings an oscillation at 
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the start field of the sintering vector. An over-short MarkDelay set will make the end 

of the mark vector turn toward the direction of the following jump direction. When 

the delay time of the second group is set long enough, there are no visible effects on 

the scanning quality hence making no difference on the position accuracy. A minimal 

set of the JumpDelay and MarkDelay is 100 sµ  for the experimental DMLS machine 

to achieve a good sintering quality. Unlike the first type, the use of these two delays 

however increases the whole processing time. The extra time with every mark/jump 

command can be calculated as: 

 

mmmJumpDelayMarkDelayDelaytime µµµ 200100100 =+=+=    (3.7)

    

3.9 Summary 

The direct metal laser sintering process is a RP method. Besides plenty of the research 

works focused on the process itself, the calibration work of the system is also 

important. The errors caused by the system are often given less attention. But the 

sintering result will be poor if the system is not calibrated properly. In this chapter, 

important errors caused by the laser system are identified and the method to calibrate 

them is presented.   
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Chapter 4 
 
DMLS Physical Model and Sintering Quality 
 

4.1 Introduction 

The mechanism of DMLS process is based on the liquid phase sintering (LPS) 

principle. But unlike the traditional LPS (German, 1985), the thermal sintering 

reaction is kinetically fast. A laser system, used as a moving heat source, scans the 

powder material surface at high speed and the duration for the laser beam to sinter 

powder particle is quite short.  

 

Early studies on a single-phase metal, such as lead, zinc or tin, were unsuccessful 

because of the balling phenomenon (Haase, 1989; Manriquez-Frayre and Bourell, 

1991). A two-phase powder-mixture material system, which contains a high-melting-

point metal (as structural metal) and a low-melting-point metal (as binder), was 

developed and proven to work effectively to mollify the tendency to form spheres 

(Beaman, 1997). Direct laser sintering with two-phase metallic powders with different 

melting points, such as Cu-Sn, Cu-solder, Ni-Sn, Fe-Cu, WC-Co, steel-Phosphor 

copper, etc, has been investigated (Agarwala et al., 1995a, Schueren and Kruth, 1995, 

Laoui et al., 1998, Fuwa, 2000). Recently, using super-solidius liquid-phase sintering 

(SLPS) as bonding mechanism in direct sintering alloy powder has also been reported 

(Niu and Chang, 1999a, 1999b, Klocke and Wagner, 2002). However, all these 

researches are still in the stage of laboratorial research. 
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In the investigation of the DMLS process, a new Cu-based metallic material system 

was developed (Zhu, 2004). The new metallic powder system is a mixture of 60wt% 

pure copper powder and 40wt% pre-alloyed metallic powder. The pre-alloyed named 

SCuP metallic powder, serving as a binder in sintering, is a Cu-based alloy with a 

melting point of 646 C° . Because of the good thermal properties of the new Cu-based 

material system, parts fabricated by this metallic powder system have several 

advantages: high density, suitable mechanical properties, low shrinkage and low cost. 

Direct laser sintering using this metallic powder system has been carried out in an 

ambient atmosphere without pre-heating.  

 

4.2 Physical Process 

The physical process of direct metallic sintering is different from sintering amorphous 

polymers such as polycarbonate, which is widely used in the earlier period. 

Amorphous polymer has a glass transition temperature gT  only and is sintered by 

viscous flow. For the DMLS process studied, when the laser scans the powder surface, 

the local temperature increases rapidly and exceeds the melting temperature mT of the 

low-melting-point binder but does not reach the melting point of the high-melting-

point metallic powder. After rapidly absorbing the laser energy, the binder changes to 

liquid and the pure Cu powders that have a high-melting-point remain solid as a 

structural skeleton during the sintering. Under the force of gravity and capillary, the 

liquid flows infiltrates into the original atmosphere pores in the raw powder bed. The 

part is densified with the shrinkage of the pores and the porosity decreases. 

Simultaneously, the solid Cu particles are wetted by the flowing liquid and connected 

together. In the following cooling stage, the liquid metallic re-solidifies and binds the 

solid particles effectively. Because the heating and cooling rates are very fast and the 
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time of sintering is short (~0.1s), it is almost impossible to achieve the full density 

parts. The sufficiency of the liquid flow for good wetting is critical to the final 

sintered part quality but the viscosity of the liquid hinders the flowing process. A 

schematic diagram of process stages is shown in Figure 4.1. 

 

 

 

 

 

Figure 4.1 Schematic diagram of process stages in DMLS 

 
In the sintering process, there are many parameters influencing the sintering process. 

All the process parameters set in advance are based on a rule, i.e. to ensure the 

powder sintering process feasible and the sintering quality acceptable.   

  

4.3 Energy Input by Laser Irradiation 

The laser beam, used in the DMLS system, may be approximated by a Gaussian 

function. For a gaussian laser, the energy intensity ( 2/ mW ) at any point is denoted as 

(Jacobs, 1992): 

)/2exp()( 2
0

2
0 wrIrI −=            (4.1) 

where 0I  is energy intensity in the center point of the laser beam, r is the distance 

from the point to the center, 0w  is the distance in which the laser energy equals to 1/e 

of 0I , and e is the base of natural logarithms. In the study of DMLS system, the 

standard value of 0w  is 0.4mm (SCANLAB, 1998). 0I  can be calculated based on the 

laser power P (W) by: 

(c) after sinter(b) sintering(a) before sinter 
Structure metal Binder Binder (melt) Pore
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 ∫
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)(              (4.2) 

where rdrdA π2=  

Substituting (4.1) into Equation (4.2),  

2
00 /2 wPI π=               (4.3) 

Substituting the Equation (4.3) into Equation (4.1). 

)/2exp(]/2[)( 2
0

22
0 wrwPrI −= π          (4.4) 

In the operating situation, the moving laser source with a fixed scan value v  scans the 

powder surface according to the defined scan pattern. For the parallel-raster scan 

pattern, the irradiation E ( 2/ mmJ ) at the point K in the surface can be achieved as the 

integral of the laser irradiance over times. For a limited length of single line, the 

exposure E at point K (Figure 4.2) can be calculated as: 

drwrwPE
r

rK )/2exp(]/2[ 2
0

22
0

2

1
−= ∫ π          (4.5) 

Where 22 yxr +=  and dx
yx

xdr
22 +

=  

 

For convenience, Jacobs (1992) set the limits of x as )~( +∞−∞  and got two 

important conclusions. Firstly, the concept of ‘zone of influence’ such that within this 

zone a differential area dxdydA = that receives 99.99% of its total irradiation is 

defined. The radius of the zone of influence R is given as: 

0146.2 wR =                (4.6) 

Secondly, the surface irradiation equation at any point with the y value to the scan line 

is equal to: 

)/2exp(
/2

)0,( 2
0

20 wy
SwP

yE scan −=
π

         (4.7)  
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where scanS  is the scan speed. Only part of the laser exposure energy absorbed by the 

powder system and others are reflected or transmitted by the powder bed. The actual 

energy absorbed by the powder can be calculated as: 

 EE Rabsorb α=               (4.8) 

where the fraction absorbed Rα  is called the absorptivity. The absorptivity is 

dependent on the material characteristic, temperature, etc.Based on Equation (4.8), 

consider a point located at the thm  hatch line of totally n lines, the y value from the 

point to the thi hatch line is: 

 );)((, HSmiabsy pi −=             (4.9) 

where function abs is the absolution calculation and the HS is the hatch space between 

two continuous hatch lines. 

 

Substituting Equation (4.9) into (4.7), we can obtain the total exposure energy with 

multiple line scanning as: 

 )/))((2exp(
/2 2

0
20

1
wHSmi

SwP
E scan

n

i
−−= ∑

= π
;              (4.10) 

 

 

 

 

 

 

 

Figure 4.2 Schematic diagram of laser beam sintering of continuous hatch lines 
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In the current system, the value of 0w  equals to 0.4mm and the default value of HS is 

0.2 mm. The energy irradiation by the neighboring 6 hatch lines to point K located at 

thm  hatch line (Figure 4.2) is listed in Table 4.1: 

 

Table 4.1 Energy irradiation with neighboring hatch lines 

Distance ( HS× ) Exposure 

0 ( thm  hatch line) 0E  

± 1 1E =0.607 0E  

± 2 2E =0.135 0E  

± 3 3E =0.011 0E  

 

Seen from Table 4.1, when the distance from the point K to the sintering hatch line is 

more than three times of the hatch space, the energy achieved can be ignored (<1.1%).   

The time of the point K to absorb effective energy of each line is equal to the time of 

the laser beam pass the round with radial R in the hatch line. The time for the powder 

to absorb the laser energy (99.99%) can be calculated as: 

 scaneff SyRt /22 −=                   (4.11) 

For default speed value of 100mm/s for scanS , the effective sintering time of each 

hatch line on point K is less than 10ms. The high sintering rate makes the temperature 

of the sintered powder increase rapidly. 
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4.4 Sintering Quality 

The main properties important to industry include the process time, dimensional 

accuracy, surface roughness, mechanical properties, etc. 

4.4.1 Build time  

A reliable and accurate estimation of the build time is necessary to help the user 

decide the process parameters, cost and product development cycle time. Actual build 

time depends on the part geometry and the process parameters used. These important 

controllable process parameters include scan speed, hatch density, layer thickness and 

laser power. Because each hatch scan can be viewed as a voxel, a 3-D part is 

accumulated by a series of voxels (Choi and Samavedam, 2001) with a specific height 

(layer thickness) and width (hatch distance). The built time of the part is equal to the 

total time to create each of the voxel with respect to the build-time interval between 

each layer. The total length of all the voxels is equal to 

)/( thicknesshatchspaceVolume × . To understand the effect of process parameters on 

the total build-time, the following equation has been derived based on the volume of 

the part and the build-time interval between each layer, i.e. 

)
//

(1
LayerHeight

JumpCavitiesScanParts
Total tH

HS
SVSV

TH
t +

+
=          (4.12) 

 

where Totalt , denotes the total build time, PartsV  and CavitiesV  the total part volume and 

the cavities volume in the part, HeightH  the part height, and JumpS  the jump-scan speed. 

Layert  denotes the building time taken from each layer. Some factors were ignored to 

simplify the function. These factors are mainly related to the time used in the 

changing of scan state (Chapter 3.8.2). As shown in function (4.12), layer thickness 
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has a close inverse relationship with the total processing time. It is the most important 

factor when the processing time is of greater concern than other resulting properties 

4.4.2 Material shrinkage 

The dimensional error inherent by the sintering process is mainly due to the material 

shrinkage of the solid-liquid-solid phase changes. During the sintering process, two 

different kinds of material shrinkage occur i.e. sintering shrinkage and thermal 

shrinkage.  

4.4.2.1 Sintering shrinkage 

The sintering shrinkage is mainly caused by the change of pore size and the porosity. 

During the sintering process, the molten binder flows to wet the surface of the 

structure powder and fill the pores by capillary and gravity forces. The sintered 

material is densified due to the shrinkage of pores and causes the final part volumetric 

shrinkage. Although the volumetric shrinkage occurred along the X, Y and Z 

directions simultaneously for a single scan line, the shrinkage along the Z (orientation) 

direction will be compensated by the deposited metallic powder from later sintering 

layers except the last layer and thus the effect of material shrinkage on the 

dimensional errors in the z direction can be neglected. Hence only the shrinkage along 

the laser sintering direction in plane is considered. Besides the shrinkage of pores, the 

grain growth of the binder and the rearrangement of the Cu powder have also some 

effects on the final shrinkage. 

 

4.4.2.2 Thermal shrinkage 
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For metals, usually the yield stress decreases to a very low level if the temperature 

exceeds a definite value (Willems et al. 1981). Thus the thermal shrinkage ∆L can be 

simply regarded as elastic compressive shortening.  

LTL ×∆×=∆ µ                    (4.16) 

where µ  is a linear thermal expansion coefficient of the material, and T∆  is the 

temperature gradient of the sintered powder due to the absorbed energy and the 

material thermal properties of the materials. 

Both the sintering shrinkage and thermal shrinkage work together for the final parts 

volume change and it is hard to separate them strictly by experiments.  

4.4.3 Surface roughness 

Two kinds of surfaces are formed at the built part. One is defined as the sintering 

layer α-surface that is the side faces accumulated by the outside surfaces of layers. 

The other kind is not the layer surface but an accumulation of the contour of each 

layer defined as contour accumulation β-surface  (Figure 4.3).  

 

 

 

 

 

    

 

 

   (a) Digital model              (b) Two kinds of surfaces in the physical part 

Figure 4.3 Sintering layer surface (α) and contour accumulation surface (β) 

β α
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4.4.3.1 Sintering layer surface quality  

Some part of layer surfaces without covered by others are exposed outside. The 

quality of these surfaces is mainly determined by the sintering process. During the 

process, the melted powder will flow to the pores and connect the structure powder. 

After cooling down, the residual pores remain at the surface. The shape of the 

structure powder and the re-solidification fluid with the impurity dust will also 

destroy the flatness of each layer.  

aR  known as the arithmetic mean deviation of the measured surface profile is the 

most commonly used parameter to describe the average surface roughness and is 

defined as an integral of the absolute value of the roughness profile measured over an 

evaluation length (Whitehouse, 1994): 

∫=
l

a dxxy
l

R
0

)(1                   (4.17) 

The average roughness is the total distance of the peaks and valleys divided by the 

evaluation length and is expressed in mµ .  

4.4.3.2 Contour accumulation surface quality 
 

Because this kind of surfaces is an accumulation of the layer contour with a fixed 

thickness, the sintering quality is not the main factor to influence the roughness of the 

final part. An error known as stair-case error is the main factor to affect the surface 

quality. The stair-case error that strongly influences the surface quality seriously is 

unavoidable when using the finite layer thickness to laminate parts. The value of the 

stair-case error is mainly effected by the geometry shape of the build part, the part 

orientation and the thickness. Three different methods were used to quantifiy the error.  
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• Cusp Height 

Using cusp height is the most popular way to evaluate the effect of staircase. Cusp 

height is defined as the maximum distance between the sliced layer and the desired 

surface measured along the direction of the surface normal. As shown in Figure 4.4, 

the Cusp hight can be calculated as: 

θsin×= TCusp               (4.18) 

Where T is the layer thickness and θ  is the angle between the digital model surface 

and the building direction. 

 

 

 

 

Figure 4.4 Cusp height 

 

• Sectional area: the sectional area is the area of ABC∆ and equal to: 

2

2 θtghS ABC
⋅

=∆               (4.19) 

• Volumetric error: 

Volumetric error is defined as the volumetric difference between the 3-D digital 

model and the actual sintered part. The error of layer i is equal to (Lin, 2001): 

dldee ii ⋅= ∫               (4.20) 
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where dl is the differential length along the layer contour and ide  is the sectional area 

of ABC∆ . The volumetric error of the entire part will be denoted as the sum of each 

layer: 

∑=
i

ieE                (4.21) 

The quality of contour accumulation surface can be quantitatively achieved for each 

3-D digital model. The relationship between the surface quality and process 

parameters (part orientation and layer thickness) exists. Some proposed methods by 

optimizating these two parameters can control and improve the surface quality 

effectively (Suh and Wozny, 1993; Dolenc and Makela, 1994; Cheng et al. 1995; 

Frank and Fadel, 1995; Kulkarni and Dutta, 1995; Xu et al., 1997; McClurkin and 

Rosen, 1998; Tyberg and Bohn, 1998; Cormier et al. 2000; Ziemian and Crawn, 2001; 

etc.).  

 

4.4.4 Mechanical strength 

The tensile strength can be often interpolated linearly with the part density, while the 

elongation at fracture and impact strength exhibit a stronger dependence on porosity 

(Thümmler and Oberacke, 1993). When the air in the powder bed cannot be released 

resulting in the residual pores in the part, and the density of the part will be low. The 

residual pores left inside the part is believed as the main reason for low strength, as 

the crack will first occur there under an applied load. The previous research shows the 

relationship between the density and strength by the following equation (Zeng, 1989): 

mpC 0σσ =                            (4.22)    
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where σ0 is the strength of fully dense material, C and m are empirical material 

constants, and p is the fractional density. Also, the strength depends on the inter-

particle connect level. When the wetting between the liquid and the structure metal is 

poor, the strength will be low. The connection is mainly decided by the material 

properties and the sintering condition provided. 

 

Because of material accumulation in the process, the strength of the sintered part is 

not isotropic. The mechanical properties of the final part are also dependent on its 

orientation in the process. Previous studies (Subramanian, 1994; Ahn et al., 2002 etc.) 

have proven the strength along the orientation (the Z-direction of the building process) 

is weaker than the strength at in-plate directions. The connection between the two 

layers is not as good as the connection between two continuous hatch lines because 

the sintering in-plate is more sufficient. Also the time interval between two layers is 

much longer than that of between the hatch lines hence reducing the energy strength. 

 

4.5 Research on the Influence of Single Process Parameter on Resulting 

Properties 

To understand the effect of process parameters 

1) laser scan speed 

2) laser power 

3) hatch density 

4) layer thickness 

 on the following resulting properties 

a) part accuracy 

b) strength 
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c) roughness 

was experimental determined. 

 

4.5.1 Experimental setup 

4.5.1.1 Scan path  

A cross zig-zag scan path (Figure 4.5) was chosen during all the experiments. Unlike 

the single zig-zag scan path, the scan paths are made in directions that are 

alternatively vertical and horizontal for consecutive layers. This type of scan mode 

aims to reduce the performance difference in the X and Y directions and bring about 

more homogeneous properties to the final parts.   

 

 

 

 
 
 

Figure 4.5 Cross Zig-zag scan path 

 
4.5.1.2 Test parts 

According to the ASTM standard E8 (ASTM, 1999) for the tensile testing of metallic 

materials, specimens were built with a 0.235mm offset (Tang el al., 2004) for the laser 

beam set by the machine to evaluate the resulting properties. The thickness and 

reduced section width at the specimen are both 6.35mm. The overall length L is 

92mm (Figure 4.6). All the size values are set following the ASTM standard. The 

developed system software can perform functions such as transferring the CAD 

Z Layer Scan Path

3D Model 
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models in STL format to the layer data required by the machine. Besides, it could 

combine several parts to be built on one base and select the drive data according to 

different process requirements of each part. Five test specimens that have the same 

layer thickness were built on one base each time (Figure 4.7). Because the geometric 

shapes and the process parameters for all these samples are the same, the effect of 

other factors, such as temperature, that are decided by the process parameters and 

layer geometric shape, can be ignored. After the specimens were built, the surface 

roughness (Ra) and the tensile strength of each one were tested.    

                                                                   

 

 

Figure 4.6 CAD part model of specimens       Figure 4.7 Five parts built in one base 

The value of the length L was measured accurately to determine the dimensional 

accuracy. In fact, many factors have an effect on the dimensional accuracy, such as 

the material, powder size, machine position error and process parameter values. Since 

part distortion often happens, one part size is not enough to fully evaluate the 

dimension accuracy. But if one size is very close to the design size, most of the other 

sizes of these parts will show a consistent result to the design sizes. When the part is 

built, all parts show similar distortion trend most of the time. The parameter settings 

for the experiment are listed in Table 4.2. 

 

 

L
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Table 4.2 Parameter settings for experiments 

 Variable parameter settings * Other parameter settings 

Group #1 P =70; 90; 110; 130; 150; 170; 190 ScanS  =180; HS=0.2; TH=0.1

Group #2 ScanS =85; 115; 145; 175; 205; 235 P=120; HS=0.2; TH=0.1 

Group #3 HS=0.13; 0.15; 0.17; 0.19; 0.21; 0.23 P=120; ScanS =180; TH=0.1 

Group #4 TH=0.03; 0.05; 0.07; 0.09; 0.11; 0.13; 0.15 P=120; ScanS =180; HS=0.2 

* P: Laser Power (W); ScanS : Scan Speed (mm/s); HS: Hatch Space (mm); TH: 

Thickness (mm). 

 

4.5.2 Results and discussions 

4.5.2.1 Effect on the material shrinkage 

When increasing the laser power or decreasing the scan speed, the shrinkage along the 

sintering (length) direction of the part is more serious because both sintering 

shrinkage and thermal shrinkage will be larger when more energy is absorbed by the 

powder. (Figure 4.8) Because the main concern is focused on the in-plane shrinkage, 

the effect of thickness is not significant. But when we increase the layer thickness, the 

in-plane shrinkage will be larger because more powders need to be sintered each time 

hence increase the porosity when other parameters keep unchanged. 
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 Variation of accuracy error with laser power
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 Variation of accuracy error with hatch space
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Figure 4.8 Parameters effect on part length accuracy error 

4.5.2.2 Parameter effect on the sintering layer surface roughness  

Surface roughness was measured using a Surfcom 120A surface measuring instrument. 

The experimental results (Figure 4.9) show that the surface roughness deteriorates 

with an increasing laser scan speed or decreasing laser power. Under the processing 

conditions, it seems that the amount of porosity decreases in the thin layer after 

sintering affects the surface roughness directly. When more laser energy is provided 

by adjusting the scan speed or laser power, more binder powder will be melted to fill 

the pores. The reduction of porosity and shrinkage of pores make the surface 

smoother. A denser hatch lines and thinner layer also improve the surface quality 
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because the volume of each sintering hatch line is reduced hence reducing the pores 

with a fixed amount of fluid provided.  

 Variation of surface roughness with laser power
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Variation of surface roughness with hatch space
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 Variation of surface roughness with thickness
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Figure 4.9 Parameter effect on the sintering layer surface roughness 

4.5.2.3 Parameter effect on the tensile strength 

The strength of the sintered part increases with its density. More energy absorbed by 

the metallic powder with a high temperature achieved increases the sintering time. 

The higher temperature of the sintered powder facilitates the flow of the metal. It 

results in a higher density and mechanical strength. The strength and porosity of the 

material can be controlled by adjusting various process parameters, such as laser 

scanning speed and power. Higher laser power, slower scan speed, high hatch density 
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or smaller thickness (Figure 4.10) could bring about high mechanical strength because 

more energy is absorbed by the metallic powder. 

 Variation of tensile strrength with laser power
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 Variation of tensile strength with hatch space
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 Variation of tensile strength with thickness 
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Figure 4.10 Parameter effect on the tensile strength 

4.6 Summary 

The experimental results show that the effect of different process parameters on the 

target goals can be quite different and sometime contradict to each other. To optimize 

the parameters to cater for these target goals, it becomes a multi-objective 

optimization problem. To solve the problem, an intelligent parameter optimization 

software system has been developed based on the neural network technology, which 

is described in the next chapter. 
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Chapter 5  
 
An Intelligent Parameter Selection (IPS) Methodology for DMLS 
 
 
In the RP process, the process parameters can greatly affect the final part quality. But 

some of the relationships between these parameters and their resulting properties are 

quite complicated. In many cases, the effects of different parameters on the resulting 

properties contradict one another. For example, to take less time to finish the process, 

a thicker layer and faster scan speed are needed; but normally higher mechanical 

properties cannot be achieved in such a case. A fixed set of parameter values that can 

achieve the best outcome even for two of all desired properties typically do not exist. 

Very often, these goals do not necessarily result in a similar trend as the change in the 

process parameters. The way to solve this is to make a trade-off among these goals. 

But it may still not be good enough when many different requirements from the 

customers arise. In fact, in different applications, the user is usually more concerned 

with some of the resulting properties but ignore the rest. For example, if the prototype 

part is created mainly for design review, processing time and surface roughness will 

be given more attention; if it is for fit and assembly verification, the dimensional 

accuracy is more important than the others; and if the part is for limited functional 

testing, the mechanical strength could be the main (resulting) property concerned. A 

good scenario is to auto-select the process parameter setting to satisfy the various 

requirements for different users. This could make the RP applications more agile and 

acceptable.   
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To implement the parameter auto-selection system, a generic intelligent parameter 

selection (IPS) software system is proposed for the DMLS process. The IPS system 

can capture the causal and inferential knowledge about the relationships between the 

process parameters and resulting properties to provide expert-level recommendations 

during the parameter selection process. The purpose of building such a parameter 

optimization model is to control the quality of the final part and cater to different 

requirements of the users. In the current stage, the research focused on the developed 

Cu-based material system needed in the Direct Metal Laser Sintering (DMLS) process. 

Several important process parameters including scan speed, laser power, hatch space 

and layer thickness are considered. The resulting properties are mainly focused on the 

processing time, sintering layer surface roughness, tensile strength and dimensional 

accuracy. 

 

5.1 Overall IPS System Architecture 

The overall architecture for IPS system is shown in Figure 5.1. According to the 

User 

User Interface 

Upgrade/Enquiry 
Module Inference Engine

Database 
(Knowledge base) 

Learning Engine

Process Specific Data 
Acquisition Module

Intelligent Parameter 
Selection system 

       Figure 5.1 Intelligent Parameter Selection (IPS) system architecture  
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difference in functionality, the system is divided into 6 major subsystems, namely, 

user interface, process-specific data acquisition module, learning engine, inference 

engine, upgrade/enquiry module and a global database. 

 

To select a correct parameter setting, the necessary knowledge to build the 

corresponding database is necessary. Some experimental case results at different 

parametric values are initially used to help the IPS system create the knowledge base. 

The IPS system acquires the experimental data through the process-specific data 

acquisition module and then transfers the data to the learning engine. A neural 

network (NN) is used to extract rules for system learning. After that, the knowledge 

base will be built automatically by the learning engine and then stored in the global 

database. 

 

After the knowledge base is built, the IPS system can help the user select the process 

parameters automatically to satisfy the different requirements of the resulting 

properties. Through an effective reasoning mechanism in the inference engine, the 

IPS will select the most suitable parameter setting and return the optimal result to the 

user.  

 

In addition, an new upgrade module is to be developed with the purposes for future 

research given below:  

 Add new material system: Help the user to implement these methods on 

other future-developed material systems; 

 Update the knowledge: some errors or outdated system information needs to 

be corrected;  
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 Update the experimental results to the learning engine: the user wants to 

increase the model accuracy by providing more experimental data. 

In the following sections, the implementation of each subsystem is described in detail. 

 

5.2 User Interface Module 

The primary function of the user interface is to: 

 Collect data from user; 

 Feedback useful information and help the user make decisions; 

 Distribute/gather relevant information to/from the corresponding function 

modules in the software system. 

 

In the IPS system, a Graphical User-Interface (GUI) module was developed (Figure 

5.2) using “Microsoft Windows” as a platform, so to allow the user to interact with 

the IPS software by means of a graphical display. This allows the user to input data to 

set up modeling cases, acquire suggestions, access database, and update the IPS 

system with new knowledge. Some dialog boxes are used to realize the 

communication between the user and the system.  
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Figure 5.2 GUI of the IPS software system 

 

5.3 Process-Specific Data Acquisition Module  

One very important component in this IPS system is its process-specific data 

acquisition module. Based on the user interface, the process-specific data acquisition 

module will receive the knowledge that is requested by the system.  

 

5.3.1 Function of the process-specific data acquisition module 

To build the mapping relationship between the process parameters and the resulting 

properties, the process-specific data acquisition module will search the knowledge 

base and return the necessary information to instruct the user to provide the 

knowledge for the system. The main process includes the following steps: 

 Indicate the process parameter’s operating range 

For the Cu-based material system used in the current study, the corresponding process 

parameters were identified. Based on the experiment study, an approximate operating 
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range of each parameter has been identified and saved in the database (knowledge 

base). If the user has expert knowledge on the material system that he wants to 

optimize, he can adjust the operating range of the parameters through the dialog box 

of the GUI.  

 Determine the experimental quantity and parameter setting 

The knowledge needed by the IPS system is the factual experimental results with 

different parameter values. They are the essential data for the IPS system to derive the 

relationship between the process parameters and resulting properties. Using too few 

experiment case data impairs the neural network and prevents the accuracy mapping 

of input and output. Using too many experimental case data increases the 

experimental time. A common strategy to solve it is to provide the experimental 

scenarios with a trade-off between the two factors. To ensure reliable NN training 

results, the process parameter (level) settings should cover the whole working range. 

The interval between each pair of parameter (level) settings, which can be specified 

by the application users, will determine the number of experimental cases.   

 Import the experimental results  

After the user has completed the experiment and gathered the case results, the 

process-specific data acquisition module will provide a standard format to record the 

data from user and pass it to the next subsystem, the knowledge learning module. 

 

5.3.1.1 Operating range setting in DMLS process 

The maximum and minimum working values of each parameter for the Cu-based 

material system’s used in the DMLS are shown below: 
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Table 5.1 A sample of the table structure 

Sub-table 1 (RP System-DMLS) 
Parameter Minimum Value Maximum Value 

Scan Power (W) 80 200 
Scan Speed (mm/s) 100 250 
Hatch Space (mm) 0.14 0.24 

Slicing Thickness (mm) 0.04 0.17 
 

5.3.1.2 Parameter level setting 

To research the relationship between the concerned parameters and the resulting 

properties, experiments were conducted. The design of the test part is given in 

Chapter 4.5.1. Because the operating range of each parameter is large, 2 levels are not 

enough to cover the whole scale. All these considered parameters were then set in 

three levels. If using the full factorial designs (Frigon and Mathews, 1997), total of 81 

test parts need to be built. To reduce the experimental trials, one of the fractional 

factorial design methods, called orthogonal arrays experimental design method was 

adopted. To further reduce the experimental time, a module in the system software 

was developed to combine several parts to be built onto one platform and based on 

different process requirements of each part to set the scan speed and laser power. 

Because layer thickness cannot be changed in one processing time, we set the other 

three parameters level according to orthogonal arrays with a fixed layer thickness 

level. The layer thickness also set to 6 levels and totally 54 test parts were built in this 

work. The setting of the parameter levels is shown in Table 5.2.  

Table 5.2 Parameter setting for the experiments 

Test 
No. 

SS* 
Value 

LP 
Value 

HS 
Value

LT 
Value

 Test 
No.

SS 
Value

LP 
Value 

HS 
Value 

LT 
Value

For training samples 
#01 100 100 0.25 0.05  #28 120 80 0.25 0.075
#02 150 100 0.20 0.05  #29 120 120 0.20 0.075
#03 200 100 0.15 0.05  #30 120 160 0.15 0.075
#04 150 150 0.25 0.05  #31 180 80 0.20 0.075
#05 200 150 0.20 0.05  #32 180 120 0.15 0.075
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#6 100 150 0.15 0.05  #33 180 160 0.25 0.075
#07 200 200 0.25 0.05  #34 240 80 0.15 0.075
#08 100 200 0.20 0.05  #35 240 120 0.25 0.075
#09 150 200 0.15 0.05  #36 240 160 0.20 0.075
#10 100 100 0.25 0.10  #37 120 80 0.25 0.125
#11 100 150 0.20 0.10  #38 180 80 0.20 0.125
#12 100 200 0.15 0.10  #39 240 80 0.15 0.125
#13 150 100 0.20 0.10  #40 180 120 0.25 0.125
#14 150 150 0.15 0.10  #41 240 120 0.20 0.125
#15 150 200 0.25 0.10  #42 120 120 0.15 0.125
#16 200 100 0.15 0.10  #43 240 160 0.25 0.125
#17 200 150 0.25 0.10  #44 120 160 0.20 0.125
#18 200 200 0.20 0.10  #45 180 160 0.15 0.125
#19 100 100 0.25 0.15  #46 120 80 0.25 0.175
#20 150 150 0.25 0.15  #47 180 120 0.25 0.175
#21 200 200 0.25 0.15  #48 240 160 0.25 0.175
#22 100 150 0.20 0.15  #49 120 120 0.20 0.175
#23 150 200 0.20 0.15  #50 180 160 0.20 0.175
#24 200 100 0.20 0.15  #51 240 80 0.20 0.175
#25 100 200 0.15 0.15  #52 120 160 0.15 0.175
#26 150 100 0.15 0.15  #53 180 80 0.15 0.175
#27 200 150 0.15 0.15  #54 240 120 0.15 0.175
*SS, Scan Speed (mm/s); LP, Laser Power (W); HS, Hatch Space (mm); LT, Layer 
thickness (mm). 
 

5.4 Knowledge Learning Module 

In the RP field, several important process parameters could determine the final 

properties effectively. But the relationship between them is complicated and has not 

been precisely known thus far. The knowledge extraction from the experimental data 

to derive these relationships is a formidable task that requires sophisticated modeling 

techniques. A neural network (NN) that adopts the backpropagation (BP) learning 

algorithm (Fu, 1994) is used as the learning model to solve this problem. The 

widespread applications of the NN are attributed to its excellent performance in the 

modeling of nonlinear relationships involving multiple variables, in place of 

conventional techniques.   

 



 
Chapter 5 An Intelligent Parameter Selection (IPS) Methodology for DMLS 
 

 70

5.5.1 Multilayer feed-forward network 

An NN is a massively parallel-distributed processor made up of simple processing 

units (neurons) (Haykin, 1999). Simulating interconnected neurons working in 

parallel, NN is a simplified mathematical model to simulate the neural behavior. 

Following the fast development of computer technology, intensive calculations are no 

longer the bottleneck to NN. Since the mid-80's, many novel NN models, for 

examples back-propagation (BP) network, radial-basis function (RBF) network, 

adaptive resonance theory (ART) network and Hopfield network, have been widely 

applied to optimization problems, pattern classification, image processing, regression 

problems, simulation and so on. NN applications have gotten a much success in many 

fields now. 

 

The multilayer feed-forward network is now the most popular NN structure. The 

network consists of three parts: the input layer that receives the training sample data; 

the output layer that gives the training results; and one or more hidden layers that 

connect the input and output layer. The connection between the two units in 

consecutive layers is weight. Normally, one hidden layer can solve most non-liner 

approximation problems. In this study, a 3-layer NN model, including one hidden 

layer, is employed. To simulate the network, a NN software called SNNS (Stuttgart 

Neural Network Simulator) (1995) was used for this purpose in the study. 

 

During the training process, each non-input unit k’s value is described by:  

 
                                                                                      (5.1)  

where mxxx ,...,, 21  are the input values of unit k; kmkk ωωω ,...,, 21 are the weights 
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between inputs and unit k, ϕ (.) denotes the activation function. The most common 

activation function, the sigmoid function, used in approximation problems is adopted 

as: 

)exp(1
1)(

jv
v

θ
ϕ

+−+
= ;             (5.2) 

;
1
∑
=

=
m

j
jkj xv ω                (5.3)   

 

where jθ  is the bias of unit  j. 

Comparing the network output with the target output, the error is computed by: 

),(ˆ)()( nynyne jjj −=               (5.4) 
 

Neuron j is an output unit and )(ny j is the corresponding target output (given by 

experimental data). n, is the nth number of the test sample. The backforward errors 

are used to adjust the weights according to the learning rule. The adjustment gradually 

brings the output closer to the target output. Till now the BP algorithm is still the most 

common and powerful learning method.  

 

5.4.2 BP algorithm 

The BP network is a multilayer feed-forward network with a different transfer 

function based on the artificial neuron and powerful learning rules (Haykin, 1999). It 

was discovered by Parker (1974) and Werbos (1985) independently. Many books (Fu, 

1994; Haykin, 1999, etc.) give detailed descriptions about the multi-feedforward 

network and BP algorithm.   

 



 
Chapter 5 An Intelligent Parameter Selection (IPS) Methodology for DMLS 
 

 72

Using the standard BP algorithm, the thn  training inputs first propagate forward by a 

fixed weight until the network’s output )(ˆ ny j is obtained. Then the errors between the 

training outputs and target outputs are used to backforward layer-by-layer until it 

reaches the input layer. During this backforward process, the weights will be 

corrected according to the delta rule (Haykin, 1999), i.e., 

           ijij ow ηδ=∆  

  
⎪⎩
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⎧ −
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/

                        (5.5) 

 
where:η  denotes the learning factor;  io  the output of the preceding unit i (if unit j is 

an output unit, io equals to jŷ .); i the index of  the units with link ijw  from i to j; j the 

index of the current unit; and k the index of the units with link jkw  from j to k.  

During the next training process, the corrected weights will be kept unchanged again 

at the forward pass. Each sample data pair is used to train the network in the two-pass 

circulation. The NN is trained by all training samples iteratively until the error can be 

accepted. 

 

5.4.3 Realization of the DMLS process learning  

To develop a backpropagation NN model as the knowledge learning module of the 

IPS, several stages are necessary:  

 Determining the input and output of the NN 

At first, the process parameters and resulting properties interested to the user are 

identified in the process-specific data acquisition module. Their roles in the NN are 

for determining the input and output parameters.  

 Gathering the experiment data for training and testing of the NN 

if unit j is an output-unit 

if unit j is a hidden-unit 
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The experiment results of the resulting properties at different parameter level settings 

contribute to the necessary knowledge that can be used by the NN-based knowledge 

learning module to derive the relationship between the parameters and result 

properties.  

 Preprocessing the data 

After the data are imported to the process-specific data acquisition module, 

preprocessing of the data is usually required before it is passed to the NN. This is 

necessary because the sigmoid transfer function in BP algorithm modulates each 

output to a value between 0 and 1. And the input is also required to have a value in the 

scale from 0 to 1. Therefore for an input V with maximum and minimum values of 

maxV  and minV  respectively, each value V is scaled to its normalized value A by: 

)/()( minmaxmin VVVVA −−=             (5.6) 

 Training the network 

In the NN, the process parameters are the input units and the resulting properties are 

the output units. The data are then randomly separated into a training set and a testing 

set. A 3-layer NN model with one hidden layer is employed to train the data. The 

number of hidden layer has a key effect on the training results and should be 

optimized. The structure that can achieve the best training results would be recorded 

and used. The network structure and the connected weight values are recorded in the 

knowledge base after the learing/training is completed.  

 

5.4.4 Training results  

Of the 54 sample data pairs, 48 were randomly chosen to train the network. In 

addition to the 48 samples, 6 other samples were used to validate the training results. 
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Figure 5.3 Multi-feedforward networks used in the study 

Note that the size of the input and output layers are defined by the number of inputs 

and outputs of the network and, therefore, only the number of hidden neurons has to 

be specified when the network is defined. The unit number in the hidden layer plays a 

major role in the network's prediction and generalization capability. In order to avoid 

over-fitting, the number of hidden layer neurons should not be too large. 

Unfortunately till now, no effective methods can help decide the network structure 

accurately. In practice, the training results are fed back to determine the hidden layer 

and the correlated unit number chosen. A multi-layer feed-forward NN with one 

hidden layer of three units as shown in Figure 5.3 is selected based on the best 

training result. Three neural networks with the same structure (Figure 5.3) for 

different resulting properties: strength, accuracy and surface roughness are built in the 

SNNS software environment (Stuttgart Neural Network Simulator, 1995). The 

training session is stopped when the training error is less than or equal to the 0.001 

specified. If the training error does not reach the specified minimum error, the session 

will stop when the number of training cycles exceed 10000. 

After training the matrices of the final computed weights and biases of the NN are:  

Layer Thickness 

  Laser Power 

 Hatch Density 

 Scan Velocity        Hidden1 

       Hidden3 

       Hidden2 

Resulting Property 

Weights

Units 
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The model performance can be evaluated by the Root-Mean-Square Error (RMSE), 
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Figure 5.4 Comparisons of experimental vs. predicted (a) tensile strength (MPa),  

(b) dimension accuracy (mm), (c) surface roughness (µm). 

 

where N, denotes the total number of sample pairs, y the average value of the 

corresponding target outputs. The strength, roughness and accuracy of the prediction 

RMSE errors for training samples are 8.7%, 15.7% and 10.1% respectively. The 

RMSE errors for the testing samples are 7.9%, 17.8% and 12.5% respectively which 
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are at the same level of the corresponding training error. The comparison between the 

training results and desired results is shown in Figure 5.4 respectively. The training 

outputs are well matched with the target values.    

 

5.4.5 Full-scale data pairs based on the trained NN 

To respond to different users’ requirements, only building an inverse mapping 

between the resulting properties and process parameters is not enough. Most of time, 

the user’s requirement is not specific. In that case, more than one parameter setting 

scheme may satisfy the demand.  So the best one among all the satisfied settings 

should be selected and fed back to the user. On the contrary, if the requirement is so 

rigorous and no suitable process parameter setting scheme agrees with it, a 

corresponding “better” answer will be fed back to user. To realize such function, 

different parameter settings with the interrelated resulting properties are saved in a 

case-based database system in advance. To create the database, all the four process 

parameters were set into different levels according to a fixed interval in the accepted 

setting range (Table 5.3). Corresponding properties were calculated by the clear 

mapping relationship built by the NN model according to Equation (5.1). Total of 

22022 (13x11x11x14) case settings were achieved.  

Table 5.3 Process parameter settings for simulation 
 

Process Parameter work scale  setting interval  Level 
number 

Scan Power (W) 80--200 10 13 
Scan Speed (mm/s) 100--250 15 11 
Hatch Space (mm) 0.14--0.24 0.01 11 

Slicing Thickness (mm) 0.04--0.17 0.01 14 
 
 
By embedding the neural network models into the program according to Equations 

(5.3) and (5.4) and with the weight and biases shown in Equations (5.7) ~ (5.12), the 
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corresponding results in the surface roughness, dimensional accuracy and strength to 

the 22022 parameter settings were calculated and saved into the database file 

automatically. For the processing time, it is not only influenced by the four process 

parameters, but also related to the processed part volume. So an initial database 

system, which keep all the processing time units blank, was created includes the 

process parameter setting values and their corresponding results.    

 

The estimation of processing time can be achieved according to the Equation (5.6). 

When an STL file of a part’s CAD model is read by the slicing software, the part 

volume and the cavity volume of the part could be calculated according to the 

following equations:  

;ThicknessHatchScanlinesParts DDLV ××= ∑                                                               (5.14) 
 

;ThicknessHatchJumplinescavity DDLV ××= ∑                                                              (5.15) 
 
 

where: HatchD  denotes default hatch value; ThicknessD  default thickness value; ScanlinesL  

the distance of each produced scan line and JumplinesL  the distance between the 

endpoint of the first scan line, with the start point of the next scan line. When volumes 

need to be calculated, a pre-slicing function is run with the default hatch and thickness 

setting in 0.1 mm.  

 

After computing the part volume and cavity volume, different sample processing 

times were estimated according to Equation (5.6). The initial database file was 

updated and all the units in the “processing time” field were filled by the correlative 

values. Then, the whole database architecture toward the part was dynamically 

completed. The best value and the worst value of different resulting properties, i, were 
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recorded in the two array variables BestiR .  and WorstiR . . For the processing time, surface 

accuracy and dimensional accuracy, the best values should be the minimum one and 

the worst is the maximum one. But for the strength, it is just the reverse. 

 

5.5 Global Database 
 
To manage the knowledge in the IPS system systemically, a global database was 

developed. The knowledge is stored according to different RP technologies. At first, a 

trunk data structure is used to save the different RP system lists. All the useful 

information for each RP technology is stored in four sub-tables separately. The 

overall architecture is shown in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Global database architecture 

A Microsoft ACCESS® database software was used to manage these data. Microsoft 

Access allows the user to program the Jet database engine directly through its 

programming interface known as Data Access Objects (DAO) (Roman, 1999.) The 

Microsoft Foundation Class Library (MFC) supplies classes for programming with 
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DAO. A functional program in Visual C++ (VC) embedded in the slicing software 

was developed to connect the database and user.  By calling these DAO classes, a 

programmer could create and control a database system under the VC program 

environment securely. Some further programming details for the DAO can be found 

in (Kruglinski, 1997).   

 
 
5.5.1 Database for process parameters and working range  

The first sub-table records the important process parameters of the corresponding 

material system. The maximum and minimum working values of each parameter are 

also saved in this table. The Cu-based material system’s sub-table1 database structure 

is given in Table 5.1 previously. 

 

5.5.2 Database for experiment result data 

The second sub-table is used to record experimental data obtained from users. When a 

user input the experimental case results, the data will be transferred to the learning 

engine and the mapping between parameters and properties will then be built. At the 

same time, all these case data make a copy in the sub-table2. The data is useful for 

further development of the optimization model when some new experiment data are 

obtained. For data storage in the database system, a blank table with 8 fields was 

created first. The first four fields correspond to the four process parameters and the 

second four fields correspond to the four resulting properties. An extra ‘ID’ field was 

added to record the setting case number automatically. A sample is shown in the 

following table: 
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Table 5.4 A sample of the sub-table 2 structure 

Sub-table 2 (DMLS -Cu-based material system) 
ID Accuracy Protime Strength SurFin Power Speed Hatch Thickness
1 0.35 36608 33.06 15.54 150 100 0.15 0.05 
2 0.1 26733 17.6 13.7 120 160 0.15 0.05 
3 0.09 23120 15.85 14.63 160 205 0.15 0.05 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

54 0.16 9361 17.62 20.83 110 100 0.2 0.16 
 

 

5.5.3 Database for trained NN structure 

All the data in the sub-table2 are transferred to the learning engine to train the NN. 

After training, the NN structure and weights are saved in sub-table3. A sample of the 

sub-table 3 that records the NN structure with 4 input units, three hidden units and one 

output unit is shown below: 

 

Table 5.5 A sample of the sub-table 3 structure 

Sub-table 3 (RP Syste-DMLS) 
No. UnitName Bias Layer Weight1 Weight2 Weight3 Weight4
1 Velocity -0.64422 Input 0 0 0 0 
2 LaserPower 0.63439 Input 0 0 0 0 
3 HatchDistance -0.04947 Input 0 0 0 0 
4 Thickness -0.68889 Input 0 0 0 0 
5 Hidden1 -0.12887 Hidden 0.43576 0.38141 -0.38032 0.20270
6 Hidden2 1.00304 Hidden -0.52230 -1.23551 -1.34075 -5.20048
7 Hidden3 0.08811 Hidden 0.63824 -1.85845 0.33572 1.36313
8 Strength -0.11929 Output 0.60013 4.00797 -2.68487 0 

 
 

5.5.4 Database for NN-simulated results 

All these data pairs simulated by the trained NN (Chapter 5.4.5) are saved in the sub-

table4 (Figure 5.5). This table has the same data storage structure as sub-table 2. The 

difference between the two tables is: sub-table2 is used to store the actual 
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experimental results for training the NN, but sub-table4 stores the simulated results by 

the trained NN. The data saved in sub-table4 are used by the inference engine to 

search for the most suitable parametric setting for the user.  

 

5.6 Upgrade/Enquiry Module 

The upgrade module provides a connection between the users and the database. When 

a new material system is developed in future, the new experimental data with the NN 

optimization results can be saved into the database and make the parameter selection 

function more comprehensive. Besides that, the data saved in the four databases can 

also be revised based on the future work. The main task is to insert, delete or create 

data in the database.  

 

5.7 Inference Engine 

For a new user’s requirement, the system uses a reasoning mechanism to give a 

recommended parameter setting from the large number of cases that are available in 

the database. A user interface was built to help the user choose the resulting weight 

factors for all the four resulting properties. The inference engine is the center of the 

IPS system. The IPS provides a mechanism that can control the consultation process, 

and combine rules in the knowledge base with input requirements to give the 

recommendations. After the trained NN model has been built and thousands of the 

simulated resulting properties with different parametric value levels have been saved 

in knowledge base, the system can search for the most suitable parametric setting in 

the knowledge base according to the different requirements from the user. When the 

user selects the expected resulting properties and submits the requirements to the IPS, 

the inference engine will retrieve all the cases stored in the knowledge base and return 
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the results to the user. During the database retrieval, one of the following three 

situations will happen: 

 Only one case saved in the knowledge base satisfies the user’s requirement 

 More than one case in the knowledge base satisfy the user’s requirement 

 All the cases saved in the knowledge base cannot satisfy the user’s 

requirement 

In the first situation, the sole result will be returned to the user without any judgments. 

But in practical applications, often the second or third situation will be encountered. 

For example, if the user does not input any requirements, all the 22022 cases are 

selected as candidates to determine the best trade-off parameter setting for all the four 

resulting properties. In these situations, it is necessary to develop a strategy to help the 

system select the case that best caters to the demand of the user. The method that will 

be employed to solve this problem is to use an integrated factor allK . Users can 

decide the resulting weight factors from 0 to 100(%). Maximum 300 points can be 

distributed randomly toward the four resulting properties. For example, if the user 

wants to build a part in the least time and ignore all the other three, he should set the 

‘track bar control’ button into 100(%) and keep the others zeros. If he wants to use the 

trade-off setting to get the ‘best’ setting for all four results, he should set the all four 

‘track bar control’ button in the same value. For each case in the knowledge base, half 

of part that exceeds the user requirement is a bonus and will be added to an integrated 

factor allK . But if the resulting properties in the case do not satisfy the requirement, 

the difference will be subtracted from allK . In all the saved cases, the one that has the 

highest allK  value will be returned to the user.     
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5.7.1 Standard of judgment 

It is important for the system to identify the requirement efficiently and find out the 

most suitable parameter settings from the case database. To compare all the available 

cases with the new requirement, the system will read the four resulting properties for 

each case j in the database and calculate the ability index ( jiP ) of the resulting 

property i for the sample j as: 

 
)/()( ,., WorstiBestiWorstijiji RRRVP −−=                                                             (5.16) 

 
  
where jiV  denotes the corresponding resulting property value in the case j. BestiR ,  and 

worstiR , , the  best and worst values of different resulting properties i. The system will 

then query all the cases in the database and record the one with the maximum 

integrated factor allK .  Based on the condition given by the user, the rule of allK  is 

defined by: 

∑
=
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iall KK                                                                                                    (5.17) 
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iSet  is defined as the resulting weight factor of different resulting property i set by 

the user.In case j, resulting property i’s performance factor iK  is determined by the 

user’s requirement ( iSet ) and the ability index ( jiP ).  

 

When more than one case (or no case) meet the user’s requirements, a case-based 

database can help system choose the best answer effectively. After the best-matched 
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settings is found from the database, the data is selected from the database, and a user 

interface is displayed to feed-back the ‘optimal’ answer. The detailed algorithms of 

the whole process are given in Figure 5.6. 

 

     
Figure 5.6 The algorithms of the selection process 

 
 
 
5.8 Case Study 

Two cases (Part I and Part II) of test parts (Figure 5.7) under different property 

requirements were built to evaluate the methodology and the system. More priority 

was given to the processing time and dimensional accuracy for the first part. The 
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second part was given priority on the other two resulting properties. After the user 

inputs the weights correctly, the system feedback the relative process parameter 

setting and gives the expected result values. The requirement setting and 

corresponding outputs for the two parts are shown in Figure 5.8 and Figure 5.9 

respectively. The figures show the best process parameter setting scheme for each one. 

 
Figure 5.7 3D test part model 

 

           
 

Figure 5.8 User interfaces for user’s requirement set-up and corresponding result 
output (Part I) 
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Figure 5.9 User interfaces for user’s requirement set-up and corresponding result 

output (Part II) 
 

Because the strength is linearly related to fractional density (Equation 3.22), the 

fractional density of the parts was tested as a criterion for the mechanical strength. 

The comparison between the predicted property values and measured property values 

on each part is shown in Table 5.6. As can be seen, the actual values show a good 

correlation with the estimated one. It shows that the software system can generate the 

correct parameter setting for different property requirements. It also can be used as a 

tool to predict the final part’s process attribute effectively. 
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Table 5.6 Experimental results for Part I & II 

 
Part I 
*LP:200W    SS:250mm/s    HS: 0.14mm   

TH: 0.17mm 

Part II 
LP:80W    SS:100mm/s    HS: 0.14mm    

TH: 0.07mm 

Resulting 
properties 

Changing 
scale 

Pre-
Requirement

Predicted 
Values 

Measured 
Values 

Requirement Predicted 
Values 

Measured 
Values 

Build Time From 
13h22min 

15s to 
1h22min7s  

 
90% 

 
1h45min47s 

(96%) 

 
1h45min20s  

(96%) 

 
40% 

 
7h38min26s 

(47%) 

 
7h37min21s  

(47%) 

Strength 
(MPa) 

From 5.1 
to 35.12 

20% 11.19 
(20%) 

11.44  
(21%) 

90% 32.38 
(90%) 

33.2 
(92%) 

Average 
Dimensional 

Accuracy 
(%) 

 
From 0.53 

to 0.07 

 
90% 

 
0.09 (95%)

 
0.11%  
(91%) 

 
40% 

 
0.23 (64%) 

 
0.21%  
(70%) 

Surface 
Roughness 

(µm) 

From 
23.86 to 

11.85 

 
20% 

15.53 
(69%) 

16.44 
(62%) 

90% 12.87 
(91%) 

13.25 
(88%) 

 
*: LP: Laser Power; SS: Scan Speed; HS: Hatch Space; TH: Thickness. 
Note: The percentage value denotes the worst to the best performance; 0%~~ the worst performance; 
100%~~ the best performance 
 
 

5.9 Summary and future work 

By adjusting an identified set of process parameters, the quality of the DMLS part can 

be appropriately controlled. For accurate prediction of the resulting properties of the 

laser-sintered metallic parts, a software system to generate the correct parameter 

settings for different weight requirements leading to the important resulting properties 

has been developed. In the first stage, the focus is mainly on the developed Cu-based 

material Direct used in the Metal Laser Sintering (DMLS) technology. A feed-

forward NN is introduced to build a mapping between the goals in relation to the 

process parameters through experiments, some input-output data pairs have been 

identified. After continuous training by using the data pairs, this NN constructs a good 

mapping relationship between the process parameters and the resulting properties. 
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After the trained NN model was built, each of the parameter was set by using several 

levels. By combining these levels, 22022 different cases in total were generated and 

the relative resulting properties were simulated by the mapping model. Users can 

adjust the value of resulting weight factor for different application requirements. The 

system will then scan the database and display the most suitable parameter setting.  It 

gives the user a proper guidance and helps the user to quickly determine what they 

want for a particular application. 

 

Traditional approaches are typically based on mathematical models that need some 

assumptions and simplifications on their mapping relationships. These assumptions 

tend to limit the practical applications. Compared with traditional approaches, the NN 

approach can provide a good mapping between inputs and outputs without the 

aforementioned assumptions and simplifications. Moreover, the NN model is easier to 

be built. These advantages make it a powerful tool to predict complicated process 

relationships. The proposed NN approach is able to predict the properties of the parts 

built by the DMLS based on the experimental data training. But just 48 training 

samples are too few for the NN to be sufficiently robust. More experimental data 

should be provided for the NN training to improving the accuracy of the predicted 

results in future work. 

 

The software system described in this thesis realizes the multiple process parameter 

decision support for the DMLS process.  
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Chapter 6  
 
Material Heterogeneity and Anisotropy of DMLS Process 
 

6.1 Introduction 
 
Unlike the traditional material removal process, rapid prototyping is based on the 

layered manufacturing principle and is a material additive process. Lin et al. (2001) 

defined the principle of layered manufacturing fabrication as a decomposition-

accumulation process. A 3-D CAD model is first created using a CAD software, such 

as AutoCAD, ProEngineer, etc. Then the model is decomposed with a series of 

parallel layers with a specific thickness along a predefined part orientation. After that, 

for most of RP processes such as SLS, SLA, FDM etc, each layer is filled with a 

series of discrete lines. The building of each 2-D layer can be regarded as the 

accumulation of parallel hatch vectors. In the SLS process, the laser continuously 

sinters along the defined hatch vectors to build the layer. Each thin layer of sintered 

material is successively added over a previous layer. As the laser scans over the 

material, it melts and sticks together to form the 2-D layer. The sintered material is 

anisotropic because of the directional nature in the hatching and the part orientation.  

 

Besides direction dependency, the material property of each layer is also not 

homogenous. The varying lengths of the hatch lines cause local process variations, 

resulting in heterogeneous material properties. Small variations of process 

environment, such as the fluctuation of ambient temperature, laser power, etc, can 

also affect the homogeneity of material. 
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The length of hatch line has been found to be one significant factor that affects the 

quality of the final part according to earlier studies (Richard, 1993; Badrinarayan and 

Barlow, 1995; Beaman 1997). As the hatch length increases, the time delay between 

energy pulses increases thereby lengthening the cooling time and reducing over-

sintering (Badrinarayan and Barlow, 1995). However, a short hatch length and its 

corresponding short scanning time results in heterogeneity in the material properties 

of the part. But the effect of material heterogeneity on part quality has not been 

studied by the former researchers systemically. 

 

6.2 Heterogeneity and Anisotropy  

6.2.1 Material anisotropy 

Two critical factors determine the material anisotropy. The first is part orientation. 

Because the part is accumulated layer-by-layer along the orientation direction, 

material properties are very different in the orientation (build) direction from those 

directions perpendicular to the orientation. The material properties in these sliced 

layers are also different in different directions because of the influence of another 

factor, which is the hatch direction. Unlike the effect of heterogeneity, the effect of 

the anisotropy on the part quality is comparatively simple because the difference is 

direction-dependent.  

 

6.2.2 Material heterogeneity 

Besides the influence on the material properties due to hatch direction and orientation, 

the microscopic structure of each layer is uneven. The properties in the local fields 

filled with different lengths of hatch lines are not uniform. These differences affect 

the heterogeneity of the material property. The effect of small fluctuation of the 
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process environment can be neglected because low variability at a macroscopic scale 

is referred to as quasi-homogeneous (Isaac and Ori, 1994). 

 

Effective control of material anisotropy can be achieved by adjusting orientation and 

hatch direction. If the built part needs to be on operation under a load, the direction 

with a higher strength should be in the load direction to prolong the life cycle of the 

built part. However, it will be difficult to control material heterogeneity because the 

hatch lengths vary greatly for different geometric shapes. The resulting microscopic 

material structure varies according to the location on a layer. This property is 

undesirable because it disrupts the homogeneity in each sintered line and is difficult to 

control. 

 

6.3 Material Heterogeneity for Different 2-D Layer Geometries 

During sintering, the structure powder is wetted and bonded together by the flowing 

of the liquid binder. The capillary and gravity are the main driving forces for flowing 

liquid binder to reduce free energy of the system. By the flowing of the liquid metal, 

the structure powders are wetted and bound together when the binder re-solidification. 

Sufficiency of the liquid flow is critical to the sintered part density and further affect 

the sintering quality. Being primarily thermal in nature, the sintering process strongly 

depends on the temperature variation with time. For a selected material, the physical 

properties of prototype parts resulting from the DMLS processing are strongly 

influenced by the temperature history during the laser-material interaction period 

(Williams and Deckard, 1998). If the time of the liquid-phase is prolonged, the flow 

of the liquid-phase metal will improve filling up the pores and thereby increasing the 

densification. Besides the time of the liquid-phase, the highest temperature achieved 
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at the powder surface is another important factor because it brings about higher 

temperature gradient to give more surface activation energy for improved liquid-phase 

flow. 

 

 Generally, the distribution of powder temperature vs. time is one of the key factors to 

affect the final sintered part quality. The sintering process is a dynamic progress and 

the temperature change of the powder can be divided into two stages. The first stage is 

the very short time interval in which the laser sintering creates the heat effect zone of 

the powder material. At this stage, the temperature of the sintering material will 

increase quickly to achieve the melting point of the binder. The main temperature 

increase is by absorbing the laser energy (the effect of laser sintering). The remaining 

time is mainly a heat transfer process decided by the physical properties of the powder 

on the heat flow and the surrounding temperature. By neglecting the start and end 

regions of each layer, the temperature variation can be controlled in a similar situation 

for homogeneity.  

 

6.3.1 Dexel (hatch) model 

Based on the RP process, the 2-D layer is filled by parallel hatch vectors. The laser 

continuously sinters along the hatch vectors to build the 2-D layer. Each hatch vector 

can be considered as a dexel (Chiu and Tan 1998; Choi and Samavedam, 2001). 

During processing, the laser sinters along the trajectory guided by the hatch vectors. A 

voxel with the specific height and width can be built around each hatch vector (Choi 

and Samavedam, 2001).  Each 2-D layer of a specific thickness can be represented as 

the accumulation of a list of voxels inside as illustrated in Figure 6.1. The change in 

the sintering quality of the 2-D layer is regarded as a composite effect of the voxels. 
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To simplify the model, the hatch line vector (i.e. dexel) is used to denote the 

corresponding voxel. Based on the model, diverse shapes can be regarded as different 

combinations of hatch lines with different lengths. Analyzing the accuracy due to the 

effect of geometric shapes can be considered to be similar to analyzing the effect by 

the hatch lines and their interaction. This method is more direct and easy.  

 

 

 

 
 
 

 

 

Figure 6.1 Translation from a layer to voxel combination 

 

6.3.2 Neighboring effect brought by the change of hatch length 

During the laser sintering process, each sintered point on the surface of the powder 

bed receives multiple energy pulses of varying intensity (Beaman, 1997). Consider a 

model in an ideal situation where the length of each hatch is long enough for the 

temperature to decrease near to the surrounding temperature before receiving next 

energy pulse. The temperature vs. time curve of a point P in hatch C is illustrated in 

Figure 6.2. T denotes temperature and t denotes time. mT  is the melting temperature of 

the binder, nT  the process ambient temperature, and pt  is the time when the laser 

beam focuses on the sintered point P. The neighboring second and third energy pulses 

are due to the effect of sintering the neighboring hatch (A, B, D, E). This effect is 

defined as neighboring effect. 

2-D layer filled with dexels (hatches) Voxel model
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 In this situation and neglecting the hatch lines at the edges, the shrinkage of each 

hatch line is similar because the temperature variation with time is similar in each 

hatch line. The integrated 2-D layer shows similar percentage shrinkage along the 

sintering direction in different geometric regions of the layer. 

 

But in practice, the hatch line lengths will be much different for different geometric 

shapes. In the regions with short hatch lines, the interval between successive 

irradiations is relatively short. When the interval is not sufficiently long for the 

surface to cool down, the temperature in the region will be gradually built up, 

resulting in higher temperature and longer existing time of the liquid-phase. The 

variation in the temperature history when sintering hatch lines of different length 

causes differential shrinkage in the 2-D layer and thereby reduces the sintering 

accuracy. The negative effect of the short hatch line sintering on accuracy is referred 

herein as the negative neighboring effect. In this situation, the curve of temperature vs. 

time will change to the situation as shown in Figure 6.3. Tontowi and Childs (2001) 

studied the effect of different pre-heating temperatures of the powder bed on the part 

density and energy density. The effect brought by the neighboring hatch lines can be 
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regarded as pre-heating and post-heating that could change the pattern of powder bed 

temperature distribution dynamically. When the temperature and time feature in 

different regions are not similar, the sintering quality would most likely to be different.  

 

Williams and Deckard (1998) have tested the effect on the density and strength of 

variable delay periods between successive irradiation exposures during the laser-

material interaction period due to change in geometry using bisphenol-A 

polycarbonate material. The results show an obvious change on the density with the 

variation of delay period. Similarly, the other properties such as the percentage 

shrinkage around the region of shorter dimension are expected be different and affect 

shrinkage uniformity of the layer. More seriously, distortion and warpage of the 

sintered layers may occur with such differential shrinkage in the part. Besides the 

neighboring effect causing uneven shrinkage, the heat-affected zones arising from the 

finite diameter of the laser beam are also different when sintering regions of short 

hatch lines due to the variation in the temperature profile. To solve these problems, 

the temperature profile of the sintered powder should be maintained as uniform as 

possible. 
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Figure 6.3 The negative neighboring effect on the Temperature vs. Time curve 
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6.3.3 Experimental validation 

6.3.3.1 Apparatus setup 

To verify the aforementioned analysis of the temperature variation on regions with 

different hatch line lengths, several experiments have been conducted using a 

RAYTEK® MXCF modal non-contact infrared thermometer (Figure 6.4). The 

distance between the measured object and the sensor of the infrared thermometer was 

set to be around 500mm and the measured spot size was around 6mm. The 

temperature in the measured spot was measured continuously and the average 

temperature was recorded at an interval of 300ms. Three parts of lengths (l) (Figure 

6.4) of 40mm, 15mm and 5mm were sintered respectively. The scan speed was set at 

100mm/s, with hatch line distance of 0.2 mm and layer thickness of 0.1mm. The laser 

power was reduced to 10W and the measured temperature was located at the 

measuring range of the infrared thermometer from –50°C to 900°C. 

 

Figure 6.4 Experimental setup for continuous temperature measurements 

 

6.3.3.2 Experimental results 
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The curve of the average temperature against time in the measured area during the 

sintering process was obtained. Figure 6.5 shows the measured results of the three 

parts with different hatch lengths. As shown in Figure 6.5 (a)~(c), the temperature 

accumulation by the pre-heating and post-heating of the neighboring effect is more 

serious when the hatch line is shorter. The highest temperature shown in (a) is greater 

than 900°C, which is much higher then the ~700°C shown in (c). It provides evidence 

of the difference in the temperature history obtained in the regions with different 

hatch line lengths. The flat region in (a) is due to the actual temperature exceeding 

working- range limit of 900 °C of the thermometer device. 
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Figure 6.5 Temperature variation at the measured spot during the sintering process 

 

6.4 The Effect of Material Heterogeneity and Anisotropy on the Part Quality 

6.4.1 Microstructure of the part built with different hatch length  

The morphologies of the sintered parts built with different L were observed using the 

scanning electron microscopy (SEM) JESL® JSM-5500 System (JESL, 1999) and are 

shown in Figure 6.6. In Figure 6.6 (a), L is the smallest and it can be seen that the 

inter-connected pores are small. With increased L, the inter-connected pores become 

bigger. But when L is sufficiently long, there is little change in inter-connected pore 
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size, as can be seen in Figures 6-(d), (e) and (f).  These indicate that the sintered 

material becomes denser with shorter hatch lines (Table 6.1). Under that circumstance, 

the sintered powder does not have sufficient time to cool down as it absorbs energy 

transferred from the neighboring hatch during the sintering process. The absorbed 

energy adds to the density of the energy, resulting in a denser structure. 

 
Table 6.1 Fractional density of sintered sample using different length of hatch lines 

 Packed 
powder

L=3mm L=10mm L=30mm L=50mm L=70mm

Fractional Density 60.5% 79.6% 75.2% 70.3% 69.1% 68.6% 
 

6.4.2 The effect of material anisotropy and heterogeneity on part strength 

To investigate the effect of material anisotropy and heterogeneity together on the 

tensile strength of the part, a set of experiments was designed and implemented. 

 

6.4.2.1 Experimental study on tensile strength 

The specimens were designed according to the ASTM Standard E8 (ASTM, 1999) for 

the tensile testing of metallic materials with a 0.235mm offset (Tang et al., 2004) for 

the laser beam compensation. The thickness and reduced sectional width of the 

specimen are both 6.35mm. The over-all length L is 92mm. All the dimensions follow 

the ASTM Standard E8. 
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Figure 6.6 SEM image of sintered samples using different length of hatch lines: (a) 

L=3mm; (b) L=10mm; (c) L=30mm; (d) L=50mm; (e) L=70mm; (f) Packed powder 
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To study the influence of material anisotropy and heterogeneity on the part strength, 

two groups of experiments were designed.  Except for the hatch direction and part 

orientation, all the other process parameters are set as follow:  

Laser scan speed: 100mm/s; laser power: 100W; hatch space: 0.2mm; and layer 

thickness: 0.2mm.  

 

In the earlier research (Gibson and Shi, 1997; Ahn et al., 2002), different hatch 

directions usually result in different hatch line lengths that consequently cause 

significant difference of mechanical strength. But the direct relationship between the 

hatch direction variation and the mechanical strength when hatch line kept unchanged 

was not investigated. In these experiments, the first Group A (Table 6.2) includes 

three cases with different orientations and hatch directions. In Group A, the specimens 

were built by the DMLS machine directly and the length of hatch lines were different. 

These were designed to test the different mechanical properties in different 

orientations and hatch directions with the effect of hatch line lengths (short: A1 and 

A3, long: A2). The other group, Group B, was designed to remove the influence of 

material heterogeneity (caused by short hatch lines) on the mechanical properties. In 

Group B, a cuboid was built first. After the cuboid was built, it was cut to the standard 

specimen by using the wire cut Electrode Discharge Machine (EDM). A subgroup 

(B1) in Group B has the same orientation and hatch direction as another subgroup A1 

in Group A. The only difference between these two parts is the hatch length in each 

layer. Unlike the short hatch lines sintered in A1, the hatch line that makes up the 

layers of B1 is part of a long hatch line. This difference in hatch length is similarly 

applied to B2 and A3.  
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Table 6.2 The design of experimental specimens for Group A & B 
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Figure 6.7 Variations of ultimate tensile strength for groups A & B 
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6.4.2.2 Results and Discussions 

Each of the subgroup sets was built three times by the DMLS system. Using the 

Instron® model 8501 dynamic testing system (Instron, 1990), the ultimate tensile 

strengths σ of the test parts are obtained and shown in Figure 6.7. When the part 

orientation is perpendicular to the load direction, the average part strength is higher 

than the parallel ones (i.e. >25 MPa, Subgroups A1, A2 & B1). In these three parts 

with a build orientation perpendicular to the load direction, the average strength of 

subgroup A2 is 36.78 MPa. In this case their hatch directions are parallel to the load 

direction. The other two in Subgroups A1 and B1 have a lower average strength of 

32.01 MPa and 27.90 Mpa ( 12 AA σσ > , 12 BA σσ > ) when the hatch direction is 

perpendicular to the load direction. The average strength of those in Subgroups A3 & 

B2 with the part orientation parallel to the load direction was lower (i.e. 19.61 MPa 

and 19.03 MPa, respectively). The part that uses a longer hatch line has reduced part 

strength when other process parameters are kept unchanged ( 11 BA σσ > , 23 BA σσ >  

respectively). This is because a higher density brought by the short hatch lines 

improves the part strength. 

 

Two findings can be summarized from the above results are: first, although both the 

orientation and hatch direction affect the anisotropy, orientation has greater influence 

on the part strength; second, the length of the hatch line also affects the part strength. 

The strength of the built part using short lines is bigger than that using long hatch 

lines.  
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From the study of the strength variation with different hatch directions and 

orientations, the effect of the length of hatch line on the part strength has been 

identified. 

 
6.4.3 The effect of the 2-D layer geometric shape on the material shrinkage 

The infiltration of the liquid binder into pores causes significant volume shrinkage 

due to the reduction of the amount and volume of the porosity in the sintered layer. 

Besides these, some other factors also affect the final volume shrinkage result. These 

include the grain growth of the binder and the thermal shrinkage due to the elastic 

compressive shortening in the cooling stage.  

 

The shrinkage along the orientation direction could be compensated by the deposited 

metallic powder from the next sintering layer except the top layer. Because the 

thickness of each layer is quite small (0.1mm), the effect of material shrinkage on the 

dimensional errors in the build orientation can be neglected. For the parallel scan 

pattern, the in-plane shrinkage is mainly along the sintering direction. From a 

previous research (Jacobs, 1992), the material shrinkage is determined by the energy 

(temperature) change of the sintered powder and the material properties. When the 

history of the amount of energy transferred to powder material with time is changed 

by the effect of negative neighboring effect, the uniform shrinkage in different regions 

in the same layer would be broken. In this situation, it will be hard to use a fixed 

scaling factor to compensate the shrinkage effectively. The effect deteriorates the 

dimensional accuracy of the final parts. A more serious distortion and warpage 

problem would occur due to different percentage shrinkage changed with different 

geometry shapes.  
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From the analysis above, it is feasible to control the shrinkage by adjusting the energy 

density of the laser. If the temperature variation at each hatch line is properly 

controlled, the composite 2-D layer would show more consistent behavior in 

shrinkage. Two developed methods were given in the next chapters to reduce the 

negative effect of heterogeneity on the material accuracy.  

 

6.5 Summary 

In DMLS, the sintered material is anisotropic and heterogeneous, affecting the quality 

and performance of the built parts. This chapter presents a study that focuses on these 

two material properties and based on the experimental results, presents the causes of 

these two properties and the effects of the properties on the part quality, including 

tensile strength, microstructure, and material shrinkage.  



Chapter 7 A GA-based intelligent hatching method for improving the material 
homogeneity of DMLS process  
 

 107

 
 
 
Chapter 7  
 
A GA-based intelligent hatching method for improving the material 
homogeneity of DMLS process 
 

7.1 Introduction 

As discussed in the previous chapter, material properties in each layer are 

heterogeneous because of different lengths of hatch lines in sintering. By applying a 

proper hatch direction, the variation of the lengths of hatch lines can be controlled 

effectively. But thus far, other hatch direction search methods only aim to reduce the 

number of hatch vectors. Rajan et al. (2001) proposed an algorithm to select the scan 

hatch direction by minimizing the hatch vector segments. Qiu et al. (2001) chose the 

path direction with two intelligent features: “least number of paths” and “closest next 

starting point”. No implemented method is available to effectively reduce the negative 

effect brought by the length of hatch line by optimizing the hatch direction. Therefore, 

the relationship between the hatch direction and length of hatch line should be studied. 

This chapter presents a method to reduce the effect of short hatch lines by optimizing 

the hatch direction. 

 

7.2 Quantitative Relationship between the Hatch Length and the Material 

Heterogeneity 

7.2.1 Experimental setup 

In order to study the relationship between the hatch length and the material 

heterogeneity, a series of blocks (Figure 7.1) of different length L have been built. L 

has seven values, with greater length towards shorter one. These are listed in Table 
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7.1. The height of every block is 10mm.Three of each block (illustrated by A, B, C in 

figure 7.1) were built and the average of the measured values from the three parts 

were taken. The process parameters were laser power of 100W, hatch space of 0.2mm 

and layer thickness of 0.1mm. In each layer, the laser sintered the block at a turn; i.e. 

started sintering block A1 and after sintering A1, moved the beam to the top-left 

corner of A2 and sintered the block, until finally, C7 was sintered.  

Table 7.1 Lengths setting 

 1 2 3 4 5 6 7 
Size(LxW)mm 3x20 6x20 10x20 18x20 30x20 50x20 70x20 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7.1 Sintered blocks with different lengths  
 
 
 
7.2.2 Variation of percentage shrinkage with hatch length  

Results of SEM experiments (Chapter 5.4.1) indicate shorter hatch lines will have 

more serious effect on the homogeneity of the part. As a denser part will result in 

higher percentage shrinkage, this can be used as a measure of the effect of hatch 

length on the part property. The percentage shrinkage S of each block can be 

calculated as: 

LLLS /)'( −=               (7.1) 

L 

W  A-  1 2 3 4 5 6 7 

 B-   1 2 3 4 5 6 7 

 C-  1 2 3 4 5 6 7 

Hatch direction 
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The actual length L’ of the block was measured using the Deltronic® MPC-5 System 

(DELTRONIC, 1998) with an accuracy on 0.001mm. The percentage shrinkage 

obtained for each case of nominal length L is based on the mean value calculated from 

the three built parts and is shown in Table 7.2. 

Table 7.2 The change of percentage shrinkage with varied L 
L  Percentage shrinkage 

L=3mm 9.8% 
L=6mm 5.2% 

L=10mm 2.9% 
L=18mm 1.6% 
L=30mm 1.1% 
L=50mm 0.8% 
L=70mm 0.8% 

 
Table 7.2 shows that shorter L results in a greater shrinkage. With increased L, 

shrinkage tends towards a steady value (0.8%). 

 

7.2.3 Data fitting 

As shown in Figure 7.4, the shorter hatch lines make the part denser and bring more 

serious shrinkage. With greater difference between the actual percentage shrinkage 

with the steady percentage shrinkage, the material caused by the shorter hatch lines 

becomes less homogeneous. To reduce this negative effect, short hatch lines should be 

avoided. Because the length of the hatch line affects the material homogeneity, the 

relationship between the hatch length and the material properties is first established by 

a suitable curve fitting. Several different curve models were considered. The inverse 

model curve with the best fitting result was finally adopted. The general equation of 

the inverse model is: 

2// LcLbaS ++=              (7.2) 

where a, b and c denotes the unknown coefficients to be estimated. The fitted result 

has been found to be:  
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2/46881.1/40192.2820496.0 LLS ++=         (7.3) 

where S denotes the percentage shrinkage and L denotes the length of the hatch line. 

The fitted curve is shown in Figure 7.2. 

 

Figure 7.2 Inverse model relating percentage shrinkage and hatch length 

 
Based on the achieved fitting function, the relevant effect F of the hatch length on the 

heterogeneity of each layer can be defined and estimated as follows: 
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where the value 0.8 denotes the steady percentage shrinkage. totalN  denotes the total 

number of hatch lines in the layer. 
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7.3 Minimization of the Effect of Shorter Hatch Lines on Material Properties by 

GA Optimization  

By optimizing the hatch direction for each sliced layer, the number of short hatch 

lines can be controlled. 

 

For a given section of a layer, the hatch length can be significantly different with 

respect to the different hatching direction. As it is too complex to mathematically 

identify the hatch direction because of the variation in the layer geometry, an 

approach based on genetic algorithm (GA) is used. GA is a stochastic searching and 

optimization method based on the metaphors of natural biological evolution (Zalzala 

and Fleming, 1997). Because GA does not require derivative information or other 

auxiliary knowledge and only the objective function and corresponding fitness levels 

that influence the search (Zalzala and Fleming, 1997), it is suitable for use to solve 

this optimization problem. 

 

The developed method was implemented using a C++ programming software package 

called GAlib from MIT (Matthew, 1999). GAlib is a set of genetic algorithm objects 

and includes tools for searching optimisation routines written in any C++ program. 

 

7.3.1 Optimization procedure 

The slicing software has been programmed in Visual C++(VC). The developed 

software can transfer the CAD models in STL format to the layer data required by the 

RP machine. To implement the optimization procedure, the system software calls the 

functions in GAlib. 
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A 3-D model is first pre-sliced and translated to 2-D layers with their contours 

recorded. GA is then applied to optimize the angle of the hatch direction, α , for each 

layer. 

 

A real number genome, which is based on the hatch direction angle α , is used. 

Initially, the value of the genome α  is randomly set to a value in the scale of (0, π). 

The objective function is defined by Equation (7.4) and used to evaluate the genome. 

The optimization is to find the hatch direction α that gives minimum F value. The 

value of F determines the fitness of individual value α  for evolving.  The smaller 

value of F represents a better result. A mutations factor is created by introducing 

random changes from a Gaussian distribution to the parent. New generations of hatch 

direction α  are derived using the mutation operator based on the fitness value F. A 

stopping criterion is used to stop the run after the GA converges to within a specified 

tolerance of 0.01 for F value in 3 continuous generations, which means there is no 

further or only very little improvement. The procedure is depicted in Figure 7.3. 

 

7.3.2 Case study 

In this case, two rotor blades were built to study the effect of different hatch directions 

on the final part quality. The geometric shape of the blade is shown in Figure 7.4. 

Two parts were sliced with the same orientation in the Y-direction. But different hatch 

directions were applied to them.  The hatch direction used in the first part was in the 

X-direction; the second one adopts the optimized direction that is in the Z-direction 

(vertical to the hatch direction of the first part). Both the rotor blades were built with 

identical process parameter settings. The two built parts are shown in Figure 7.5. 
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Figure 7.3 The process flow of the hatch direction optimization with GA 

 

 

 

 

 

 

 

Start 

Read the part STL file and slicing to 2-D layers 

 

Initiation: n=0, hatch distance=1mm, α=rand (0, π)

Read the contour data of one sliced layer

Fill the hatch lines according the direction: α 

Calculate the fitness value F

Evolve the value of α by using mutation operator

n=n+1;  Satisfied the 
stopping criteria? 

Yes 

End 

No

Are all layers processed?

Yes

No



Chapter 7 A GA-based intelligent hatching method for improving the material 
homogeneity of DMLS process  
 

 114

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 7.4 The geometric shape of the rotor blade 
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         (b) 
 

Figure 7.5 Two blades built with different hatch directions (a) X-direction (without 
optimization). (b) Z-direction (with optimization) 

 

The results show that the part (Figure 7.5 (b)) using the optimised hatch direction that 

can achieve long hatch lines and better surface quality without warpage phenomenon 

(Figure 7.5 (a)). In the first part (Figure 7.5 (a)), the handle of the rotor blade is 

warped around 1mm due to the occurrence of over-heating. This is due to the small 

diameter of the handle (only 5 mm) such that at each layer. The adjacent short hatch 

lines were sintered quickly, resulting in fast build-up of heat, and hence over-heating 

the small region. In addition, the surface roughness of the first case was worse than 

the second case (Ra=29.46µm vs. 21.71µm) since the material of the second part was 

more heterogeneous.  

 

7.3.3 Case study 2 (by simulation) 

To demonstrate the effectiveness of the aforementioned GA approach, a case based on 

an engine carburetor cover model with the size of 159.72 (width) x 130 (length) x 

114.18 (height) mm was investigated. To limit the number of layers for illustration, 

the thickness of each layer was set at 5mm giving totally 23 layers. The 2-D contours 

Z (HD)
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filled with hatch lines along the optimized directions are shown in figure 7.6. The top 

left one is the 3-D model of the engine carburetor cover. As the figure shows, the 

hatch directions were significantly different when the 2-D geometric shapes varied. 

To validate the optimization result of the GA algorithm, the F values based on the 

optimized direction α and those with a fixed direction (α=0) are compared and listed 

in Table 7.3. It can be seen that the effect factor F due to the short hatch of each layer 

can be reduced significantly. Therefore the effect of the short hatch lines on the 

quality of final parts can be reduced by minimizing the number of short hatch lines. 
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                      (*LN: Layer Number) 
 

Figure 7.6 Case study: Optimised hatch direction for an engine carburettor cover 

LN: 1 LN: 2 LN: 3 

LN: 4 LN: 5 LN: 6 LN: 7 

LN: 8 LN: 9 LN: 10 LN: 11 

LN: 12 LN: 13 LN: 14 LN: 15 
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LN: 20 LN: 21 LN: 22 LN: 23 
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Table 7.3 Comparison of traditional method and the proposed optimisation method 

Layer 
No. 

optimizedα
 

F 
Value ltraditionaα

 
F 

Value
Layer 
No. 

optimizedα
 

F 
Value ltraditionaα

 
F 

Value

#01 160 0.028 0 0.313 #13 41 0.508 0 0.547
#02 160 0.028 0 0.314 #14 173 0.166 0 0.206
#03 99 0.121 0 0.451 #15 180 0.125 0 0.125
#04 94 0.096 0 0.349 #16 180 0.066 0 0.066
#05 94 0.079 0 0.323 #17 180 0.050 0 0.050
#06 94 0.135 0 0.400 #18 180 0.036 0 0.036
#07 91 0.134 0 0.590 #19 180 0.030 0 0.030
#08 93 0.154 0 0.391 #20 6 0.438 0 0.528
#09 91 0.184 0 0.373 #21 90 0.467 0 0.788
#10 93 0.254 0 0.516 #22 89 1.152 0 5.743
#11 164 0.240 0 0.528 #23 91 1.321 0 6.543
#12 146 0.494 0 0.641      

 

7.4 Summary 

In DMLS, varying lengths of the hatch line cause the built layer to be inhomogeneous. 

The quantitative relationship between the final quality of the part and its hatch lengths 

has been experimentally determined by measuring the different percentage shrinkage 

with the different hatch line lengths. The experimental results show that shorter hatch 

lines can affect the homogeneity of the properties to a great extent. To reduce this 

negative effect, a GA-based approach has been proposed to optimize the hatch 

direction based on different 2-D layer geometric shapes.  

 

The GA based hatch optimisation method can select the hatch direction that reduces 

the negative effect of the short hatch lines effectively. The part homogeneity can be 

improved effectively based on different geometry shapes. However, it still cannot 

completely prevent short hatch lines, especially when the 2-D layer geometry has 

small independent features.  
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Chapter 8  
 
Speed Compensation (SC) Method to Minimize the 2D Geometric 
Shape Effect on the Part Accuracy 
 

8.1 Introduction 

The effect of short hatch lines, which essentially causes short scanning intervals 

between each scan, results in higher and faster heat buildup in such a region. Hence, 

the energy absorbed in the short hatch lines should be reduced by setting different 

process parameters. As Equation (3.10) shows, the energy absorbed by the powder 

bed from laser radiation is determined by the process parameters of laser power, scan 

speed and beam diameter. To reduce the neighboring effect between hatch lines and 

attain more uniform temperature profile for the sintered powder, higher scan speed or 

lower laser power should have the same effect. Through controlling the scan speed 

and laser power separately or together, the negative neighboring effect can be 

compensated and consequently, the percentage shrinkage can be controlled to stay at 

similar level.  In this stage of the work, the effect of scan speed is investigated. The 

optimization method of using different scan speed based on different hatch line 

lengths is proposed. Zhang et al. (2000) has quantified the variance of heat-affected 

zone (HAZ) at the cross-sectional area with two different scanning velocities by 

numerical and experimental methods. It provides a powerful support for the feasibility 

of using the scan speed to compensate the error caused by the geometric shape. The 

relationship between the scan speed and the percentage shrinkage is difficult to 

deduce directly because an accurate temperature vs. time curve is difficult to obtain. 

Many factors such as the environment, material, process parameters, etc. can affect 
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the temperature history. Some research works have been done on it (Zhang and Faghri, 

1998; Kandis et al., 1999; Aditad and Jack, 1999) to build the mathematic model 

based on some assumptions. However, a generalized curve that can be well adopted 

according to the actually process situation for the adopted Cu-based material system 

has not been obtained so far. A more effective method to achieve the relationship is to 

use the experimental method combined with the statistical analysis. 

 

8.2 Experimental Design and Analysis of Results  

In order to build the relationship for different scan speeds with the hatch line length to 

the final accuracy, a series of cuboids with different length L have been built under 

different scan speed for the necessary data. The scan speed was set at 6 levels, 

according to a fixed interval in the accepted setting scale. The length of the cuboids 

was set at 7 levels that pay more attention on the short length not considered in the 

earlier researches. The value of each level is listed in Table 8.1. By a full combination 

of these different levels, totally 42 cuboids were built to help decide the relationship 

between the length L with the scan speed and the percentage shrinkage. All the other 

process parameters, including the laser power of 100W, hatch line distance of 0.2mm, 

and layer thickness of 0.1mm were kept unchanged. 

 

Table 8.1 The parameter setting for the experiments 

Level 1 2 3 4 5 6 7 
ScanSpeed 

(mm/s) 
100 124 148 172 196 220 N.A 

Size (mm) 3x10 6x10 10x10 18x10 30x10 50x10 70x10 
 

All of the 42 test cases were built thrice by the DMLS system. The length of the built 

part was measured using the Deltronic® MPC-5 System (Deltronic, 1998). The error 
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obtained for each case of nominal length L is based on the mean of the errors 

determined from the three built parts. The experimental results are shown in Table 8.2. 

 

Table 8.2 The percentage shrinkage of the experiment parts 
 SS*=100mm/s SS=124mm/s SS=148mm/s SS=172mm/s SS=196mm/s SS=220mm/s

L=3mm 9.8% 7.5% 6.3% 5.0% 3.2%  1.9% 
L=6mm 5.2% 3.3% 2.0% 2.0% 1.4% 1.0% 

L=10mm 2.9% 1.9% 1.3% 1.2% 0.8% 0.5% 
L=18mm 1.6% 1.2% 0.9% 1.0% 0.5% 0.4% 
L=30mm 1.1% 0.8% 0.7% 0.6% 0.4% 0.3% 
L=50mm 0.8% 0.7% 0.5% 0.5% 0.4% 0.3% 
L=70mm 0.7% 0.7% 0.5% 0.5% 0.4% 0.3% 
SS: Scan speed 

The experimental results on the corresponding set of speed and length are shown 

in Figure 8.1. It can be seen that the percentage shrinkage of the materials under a 

fixed process parameter setting is different with the variance of hatch line length. 

As shown in the experimental results, when the length of hatch line is shorter, the 

percentage shrinkage is larger because of a higher sintering temperature attained. 

When the length of the hatch line exceeds a critical value, the percentage 

shrinkage tends to a stable value. This is due to the sufficiently long time for 

sintering the hatch line to allow the powder to cool down before it receives the 

succeeding energy as the laser scans the next hatch line. Hence the strategy to 

achieve the uniform percentage shrinkage is based on two principles: 

• Using faster scan speed for the shorter hatch line region to reduce the energy 

buildup by reducing the duration of exposure to the laser energy. 

• Using a fixed scan speed for the region where the lengths of the hatch lines 

inside it exceed the critical value.   
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Figure 8.1 Percentage shrinkage with the change of scan speed and hatch line length L 

 

8.3 Building the Relationship with the Response Surface Method (RSM)  

To achieve the quantitative relationship between the two input variables: the scan 

speed and the hatch line length and the output variable: percentage shrinkage, the 

response surface methodology (RSM) was used. Response surface methodology is a 

collection of statistical and mathematical techniques useful for developing, improving, 

and optimizing processes (Box and Draper, 1987; Myers et al., 1995). The RSM can 

simulate the relationship between the input variable x and the response (output 

variable) y with a response function f. 

 ),...,,( 21 kxxxfy =              (8.1) 

where k denotes the total number of input variables.  

In this research, the input variables are the scanning speed and hatch line length. The 

response is the percentage shrinkage. A second-order polynomial model is used, 
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which has been widely used in RSM for its flexibility in applications. The general 

equation (Myers et al., 1995) of the second-order model is: 

 jiij
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0         (8.2) 

where β  denotes the unknown coefficient to be estimated. 

The model performance can be evaluated by the Root-Mean-Square Error (RMSE) 

(see Equation 4.13). The prediction validity ν  is denoted as: 

  %100)1( ×−= RMSEν             (8.3) 

 

 The estimated result of the coefficient (the β ’s) is achieved using the Matlab 

(Shapour et al., 2000) software tools. But the fitting result of directly using the 

second-order regressor is not good enough, as the RMSE error is 0.010879 and the 

prediction validity ν  is 68.7%.   

 

As shown in Figure 8.1, the response (percentage shrinkage) turns to a stable value 

following the increase of input variables. By a direct second-order polynomial model, 

the final fitting surface cannot achieve a stable value, so that a transformation is 

necessary. Because the reciprocal function has this property, we will take the 

reciprocals of the two input variables first. The transformation of the design variables 

from x to x-1 leads to a fairly good prediction, with an estimation error RMSE of 

0.0024228 and the prediction validity ν 93.0%. The model with the transformed input 

variables has a significant improvement over the original model. The final response 

surface equation is shown below: 

2
2

2
1

2121

0.19092129.29-

41.9630.186799275.1003309.0

xx

xxxxPS

×+×

××+×−×+−=
    (8.4) 



Chapter 8 Speed Compensation (SC) Method to Minimize the 2D Geometric Shape 
Effect on the Part Accuracy  

 124

where 1
22

1
11 ; −− == xxxx ;    

where PS is the percentage shrinkage with different values of the scan speed and the 

lengths of hatch lines.     

 

From Equation (8.4), the critical length Lc can be determined. When L>Lc, the 

percentage shrinkage of the cuboids along the scan direction will be identical as the 

stable percentage shrinkage. Equation (8.4) can be used to derive the relationship 

between the length L and the scan speed for the stable percentage shrinkage. A speed 

compensation factor will be added to every hatch line with different lengths. When 

processing, the laser scan speed will be adjusted based on the hatch line length. It is 

easy to implement this technique because the laser system used for DMLS can set the 

scan speed directly. 

 

8.4 Speed Compensation (SC) Algorithm 

For the computation of the compensated scan speed value based on different hatch 

line length, the speed compensation (SC) algorithm involves: 

 

Step 1.  Decide the working scale of scan speed. For the Cu-based metal powder 

sintering used in this study, the laser scan speed can be set from 100mm/s to 250mm/s.  

 

Step 2.  Set the default scan speed. The default scan speed is the set value of the initial 

speed. It is the used speed value given by the system operator and is the same as the 

fixed speed without speed compensation. 
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Step 3.  Calculate the stable percentage shrinkage in the default speed. To calculate 

the stable percentage shrinkage, the default value of speed setting will substitute the 

1x  into Equation (8.4). By increasing 2x  (hatch line length), y (percentage shrinkage) 

will run to a stable value. This value is defined as the stable percentage shrinkage. For 

example, if the default scan speed is set to 220, the stable percentage shrinkage can be 

read from table 8.2 directly and is equal to 0.3%. The stable percentage shrinkage 

should be the same with the one achieved by the traditional method described in 

(Nelson et al., 1995) and used as the scaling factor to compensate the material 

shrinkage error during the whole process. 

 

Step 4.  Calculate the effective length of hatch lines on the same line in the scanning 

direction. The hatch line data will be read from sliced layer files. If there is only one 

hatch line on a line in the scanning direction, the effective length of the hatch line is 

just the distance between the start point and the end point of it. If there are more than 

one hatch vector on the same line in the scanning direction, the effective length of 

these hatch vectors is defined as the sum of all of their lengths. This is because there 

is no neighboring effect between these continuous hatch lines. 

 

Step 5.  Calculate the scan speed based on the effective length of hatch lines. To 

achieve the scan speed value of each hatch line, the stable percentage shrinkage is 

used as the y value in the Equation (8.4). The solution of scan speed ( 1x ) with 

different hatch line lengths can be achieved by solving the quadratic equation. If the 

solution is under the working range of scan speed, the solution will be set as the 

corrected speed value of the corresponding hatch line. If the solution is out of the 

range, the maximum speed allowed in the working range will be used. This is because 
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when the effective length of hatch lines is small enough, only by increasing the scan 

speed cannot make its macroscopical shrinkage reach the stable shrinkage value. In 

this situation, the relatively ‘best’ solution is to use the ‘maximum’ speed value for 

achieving the ‘minimal’ percentage shrinkage. 

 

Step 6.   End the process until all the hatch lines have their own corresponding speed 

value .The new hatch line data with the corresponding speed value will be saved and 

used to drive the laser system to build parts. 

 

8.5 Case Study 

As a metal prototyping part, the final part strength is concerned most by the customers. 

Normally, a slower scan speed results in a higher strength because more energy is 

absorbed by the loose metal powder. It leads to a higher density in the built part. 

Therefore the default speed value is set to 100mm/s for this study case. Other 

parameters are set as laser power 100W, hatch line distance 0.2mm, layer thickness 

0.1mm, offset factor 0.235mm and scaling factor 0.8% (stable percentage shrinkage). 
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Figure 8.2 A benchmark part with nominal dimensions from 1 to 100 mm 

 

Table 8.3 The scan speed set for different regions 
 

Local 
Region 

Hatch line 
Length 
(mm) 

Optimized 
Speed 
(mm/s) 

Local 
Region 

Hatch line 
Length 
(mm) 

Optimized 
Speed 
(mm/s) 

R1 1 250 R12 2 
R2 5 241 R13 1 

250 

R3 10 198 R14 4 
R4 20 165 R15 3 

218 

R5 50 110 R16 6 
R6 100 100 R17 5 

194 

R7 80 100 R18 8 
R8 40 128 R19 7 

178 

R9 15 178 R20 12 
R10 6 228 R21 10 

160 

R11 2 250    
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To prove that the SC method works effectively, a benchmark part (Figure 8.2) that has 

nominal dimensions from 1 to 100 mm (the regions with different hatch line lengths 

are indicated as R1 to R17 in Figure 8.2) was separately built by the traditional 

method and the new SC method. In the traditional method, the scan speed was kept 

constant during the whole process. For the part built by the new SC method, the 

corresponding scan speed for the local regions with different hatch line lengths from 

Equation (8.4) is listed in Table 8.3. 

 

The comparison between the dimensional errors of the two parts is presented in 

Figure 8.3 (a) and (b), which show that with the fixed scan speed, much larger errors 

are obtained where the nominal dimensions are small. With SC, the errors for the 

parts with short nominal dimensions are reduced by as much as 40%, from a range of 

(–0.23 mm, 0.46mm) to (–0.21 mm, 0.25 mm).  As can be seen in Figure 8.3, there is 

little difference in the errors for regions with larger dimensions. 
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Figure 8.3 Error comparison by the traditional method (a) and the SC method (b)  
(The bottom and top dashes represent the positive and negative maximum errors) 

  
8.6 Summary  

In this chapter, a speed compensation (SC) method has been proposed to improve the 

dimensional accuracy. The case study with a benchmark part demonstrates that the 

new method can generate suitable speed settings for different geometry shapes, so as 

to increase the dimensional accuracy of the final part effectively. In future work, other 

process parameters, such as laser power, can be considered independently, or together 

with the scan speed, for possible further improvement on the dimensional accuracy. 

(b) 

(a) 
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Although this method has been developed based on the DMLS process, it is also 

applicable to other laser sintering processes. In future work, more experiments can be 

carried out for other laser sintering techniques.   
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Chapter 9  
 
Conclusions  
 

The aim of this research is to improve the performance of the DMLS process by 

optimizing and controlling the process parameters that affect the quality of the built 

part. The effects of the main process parameters on the sintered part quality, including 

scan speed, laser power, orientation, layer thickness and hatch space, have been 

studied based on the developed DMLS system. 

 

9.1 Contributions 

The main research contributions reported in this thesis are summarized as follow: 

1) An Approach to Calibrate and Compensate the DMLS System  

As a laser sintering process, the errors brought by the laser system have been analyzed 

systemically and the methods to compensate these errors are given, which reduce the 

possible errors caused by the laser system and improve the part accuracy. 

 

2) An Intelligent Parameter Selection Approach 

After fabrication, the four main resulting properties are processing time, mechanical 

strength, geometric accuracy and surface roughness. By using the experimental 

method, the effects of different parameters on these resulting properties have been 

derived qualitatively. The results indicate that the effects of different parameters on 

the part resulting properties are different from one another. An ideal parameter setting 

that can satisfy all the requirements does not exist. A feed-forward NN has been 

introduced to build a mapping between the goals in relation to the process parameters. 
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An intelligent parameter selection system has been implemented to determine the set 

of the parameters automatically based on different user requirements. It provides users 

a proper guidance and helps them to quickly realize their ideas on the requirements 

for a particular application.  

 

The work in this research is of considerable importance since it derives the 

relationship between the process parameters and the final quality of the sintered part. 

The IPS method proposed is a promising tool to improve and control the resulting 

properties effectively and may make the DMLS process more automatic.  

 

3) Identification and Determination of the Effect of Part Orientation and 

Geometry on Anisotropy and Heterogeneity 

Different hatch directions usually result in different hatch line lengths, which 

consequently cause significant change in mechanical strength. However, the direct 

relationship between the hatch direction variation and the mechanical strength, 

particularly when the hatch line is kept unchanged, has not been investigated. In the 

experimental method proposed in this study, two groups of experiments were 

designed. The first group, Group A includes three cases with different orientations 

and hatch directions. In Group A, the specimens were built by the DMLS machine 

directly and the lengths of the hatch lines were different. The other group, Group B, 

was designed to remove the influence of material heterogeneity (caused by short hatch 

lines) on the mechanical properties. In Group B, a cuboid was first built. After the 

cuboid was built, it was cut to the standard specimen by using the wire cut electrical 

discharge machine (EDM). Also in Group B, the lengths of the hatch lines keep 

unchanged. Based on the experimental results, two findings can be summarized. 
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Firstly, although both the orientation and hatch direction affect the anisotropy, 

orientation has greater influence on the part strength. Secondly, the length of the hatch 

line also affects the part strength. The strength of the built part using short lines is 

larger than that using long hatch lines.  

 

4) Development of an Approach to Improve the Material Homogeneity in the 

Sintering Process due to Different Geometric Shapes  

During the sintering process, the material properties are heterogeneous even with a 

strict control on the process environment because of the variations in the geometric 

shapes. The different sintering time resulting from the change of geometric shapes 

causes non-uniform local temperature distribution. The change on the material 

melting time due to the different local temperature distribution affects the sintering 

rates and consequently the homogeneous properties of the material. Material 

heterogeneity is considered as a negative property because it is hard to control. 

Because a 2D geometric shape can be represented as a series of hatch lines that 

determine the laser scan paths, a series of experiments based on the different length of 

hatch lines have been designed and used to analyze the effect due to different 

geometric shapes. It was found that the shorter hatch lines resulted in more serious 

effects on the material homogeneity. Based on this finding, two methods are proposed 

to reduce the negative effect of short hatch lines. Firstly, a GA-based hatch direction 

optimization method has been proposed and used to reduce the number of short hatch 

lines. Next, a speed compensation method has been adopted to further reduce the 

effect of residual short hatch lines by dynamically adjusting the laser energy through 

controlling the scan speed. The methods given in this study have been proven to be 

effective in improving the part homogeneity. 
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Current research has been based on a developed Cu-based material under a specific 

working condition, but the methods mentioned are also applicable to other selective 

sintering laser process with different material systems because of similar working 

principles.  

 

9.2 Future work 

From the research work in this thesis, the following areas are suggested to further 

improve the part quality: 

 

1) Study of the effect of material properties  

The material property has an important influence on the resulting properties of the 

sintered part. Important material parameters, such as particle size, shapes, the content 

proportion of the binder and structure material, etc. should be optimized together with 

the process parameters studied in this research.  

 

2) Development of the proposed IPS system by including other materials and RP 

technologies 

Currently, the focus of the IPS system has been on the developed Cu-based material 

system. But it is applicable of other material systems such as metal, ceramic, polymer, 

sand, ABS as well as in other rapid prototyping systems using laser source in order to 

further perfect the IPS system. Different materials and RP technologies can change 

the part quality significantly. By including the factors of the different materials and 

RP technologies, the IPS system can more comprehensively cater to the different 

requirements and applications. 
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3) Improving the dimensional accuracy by considering the laser power in the 

speed compensation (SC) method 

The proposed SC method only uses scan speed to compensate the neighboring effect. 

In the future work, other process parameters, such as laser power, should be 

considered together with the scan speed to further improve the dimensional accuracy. 

 

4) Further mechanical part samples need to be tested to improve and verify the 

optimization ability with the algorithm developed 

 In this study, experimental data based on relatively simple test parts (in terms of 

material and geometry) were used to verify the algorithm and the underlying physics. 

More complex parts should be built to improve and verify the developed methods for 

future work. 
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Appendix  

 

(i) Calculated Calibration Factor Kxave
1 

 

       L 

 

y-axis 

80 70 60 50 40 30 20 10 

-80 265.66 265.73 265.80 265.73 265.46 265.80 265.67 265.44

-70 265.51 265.70 265.80 265.70 265.79 265.79 265.73 265.52

-60 265.64 265.71 265.63 265.64 265.82 265.76 265.81 265.63

-50 265.60 265.70 265.76 265.81 265.79 265.83 265.57 265.68

-40 265.56 265.59 265.77 265.70 265.81 265.64 265.69 265.60

-30 265.61 265.75 265.74 265.77 265.64 265.83 265.72 265.76

-20 265.67 265.57 265.52 265.74 265.79 265.80 265.68 264.68

-10 265.48 265.67 265.80 265.71 265.76 265.78 265.26 265.76

0 265.77 265.55 265.43 265.63 265.81 265.77 265.81 265.76

10 265.61 265.69 265.72 265.72 265.71 265.79 265.35 265.71

20 265.77 265.78 265.68 265.65 265.63 265.75 265.64 265.73

30 265.75 265.76 265.60 265.46 265.79 265.82 265.80 265.49

40 265.66 265.73 265.72 265.75 265.78 265.74 265.75 265.73

50 265.76 265.76 265.48 265.63 265.63 265.77 265.68 265.76

60 265.82 265.67 265.81 265.81 265.77 265.72 265.57 265.65

70 265.69 265.82 265.69 265.72 265.76 265.80 265.57 265.20

80 265.61 265.69 265.66 265.77 265.65 265.80 265.80 265.36

 Kxave
1 = 265.69
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(ii) Calculated Calibration Factor Kyave
1  

       L 

 

x-axis 

80 70 60 50 40 30 20 10 

-80 264.67 264.75 264.37 264.30 264.55 265.46 240.30 271.94

-70 264.39 264.57 264.00 264.00 264.38 264.59 266.16 267.15

-60 264.32 264.18 264.30 264.03 264.15 264.81 264.97 265.99

-50 264.23 264.42 264.30 264.22 264.56 264.66 265.39 264.00

-40 264.31 264.24 264.03 264.43 264.05 264.13 264.32 264.58

-30 264.18 264.34 264.29 264.48 263.93 264.80 265.15 266.05

-20 264.25 263.99 264.08 264.26 264.26 264.42 264.49 264.05

-10 264.13 264.35 264.35 264.55 264.15 264.51 264.05 264.45

0 264.27 264.49 264.33 264.35 264.03 264.26 264.18 264.50

10 264.38 264.43 264.42 264.34 264.09 264.79 264.67 265.91

20 264.32 264.73 264.08 264.61 264.06 264.49 265.15 265.97

30 264.18 264.61 264.21 264.57 264.27 264.15 265.22 264.91

40 264.31 264.54 264.24 264.42 264.52 264.76 264.44 265.98

50 264.27 264.54 264.36 264.56 264.51 264.50 264.77 264.21

60 264.27 264.54 264.01 264.41 264.40 264.80 264.37 267.50

70 264.34 264.66 264.38 264.73 264.87 264.60 264.74 264.50

80 264.22 264.55 264.35 264.05 264.30 264.36 264.89 268.51

 Kyave
1 = 264.64

 




