60,405 research outputs found

    Cognitive system to achieve human-level accuracy in automated assignment of helpdesk email tickets

    Full text link
    Ticket assignment/dispatch is a crucial part of service delivery business with lot of scope for automation and optimization. In this paper, we present an end-to-end automated helpdesk email ticket assignment system, which is also offered as a service. The objective of the system is to determine the nature of the problem mentioned in an incoming email ticket and then automatically dispatch it to an appropriate resolver group (or team) for resolution. The proposed system uses an ensemble classifier augmented with a configurable rule engine. While design of classifier that is accurate is one of the main challenges, we also need to address the need of designing a system that is robust and adaptive to changing business needs. We discuss some of the main design challenges associated with email ticket assignment automation and how we solve them. The design decisions for our system are driven by high accuracy, coverage, business continuity, scalability and optimal usage of computational resources. Our system has been deployed in production of three major service providers and currently assigning over 40,000 emails per month, on an average, with an accuracy close to 90% and covering at least 90% of email tickets. This translates to achieving human-level accuracy and results in a net saving of about 23000 man-hours of effort per annum

    Confidential Boosting with Random Linear Classifiers for Outsourced User-generated Data

    Full text link
    User-generated data is crucial to predictive modeling in many applications. With a web/mobile/wearable interface, a data owner can continuously record data generated by distributed users and build various predictive models from the data to improve their operations, services, and revenue. Due to the large size and evolving nature of users data, data owners may rely on public cloud service providers (Cloud) for storage and computation scalability. Exposing sensitive user-generated data and advanced analytic models to Cloud raises privacy concerns. We present a confidential learning framework, SecureBoost, for data owners that want to learn predictive models from aggregated user-generated data but offload the storage and computational burden to Cloud without having to worry about protecting the sensitive data. SecureBoost allows users to submit encrypted or randomly masked data to designated Cloud directly. Our framework utilizes random linear classifiers (RLCs) as the base classifiers in the boosting framework to dramatically simplify the design of the proposed confidential boosting protocols, yet still preserve the model quality. A Cryptographic Service Provider (CSP) is used to assist the Cloud's processing, reducing the complexity of the protocol constructions. We present two constructions of SecureBoost: HE+GC and SecSh+GC, using combinations of homomorphic encryption, garbled circuits, and random masking to achieve both security and efficiency. For a boosted model, Cloud learns only the RLCs and the CSP learns only the weights of the RLCs. Finally, the data owner collects the two parts to get the complete model. We conduct extensive experiments to understand the quality of the RLC-based boosting and the cost distribution of the constructions. Our results show that SecureBoost can efficiently learn high-quality boosting models from protected user-generated data

    On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects

    Full text link
    The Internet of Things (IoT) will be a main data generation infrastructure for achieving better system intelligence. This paper considers the design and implementation of a practical privacy-preserving collaborative learning scheme, in which a curious learning coordinator trains a better machine learning model based on the data samples contributed by a number of IoT objects, while the confidentiality of the raw forms of the training data is protected against the coordinator. Existing distributed machine learning and data encryption approaches incur significant computation and communication overhead, rendering them ill-suited for resource-constrained IoT objects. We study an approach that applies independent Gaussian random projection at each IoT object to obfuscate data and trains a deep neural network at the coordinator based on the projected data from the IoT objects. This approach introduces light computation overhead to the IoT objects and moves most workload to the coordinator that can have sufficient computing resources. Although the independent projections performed by the IoT objects address the potential collusion between the curious coordinator and some compromised IoT objects, they significantly increase the complexity of the projected data. In this paper, we leverage the superior learning capability of deep learning in capturing sophisticated patterns to maintain good learning performance. Extensive comparative evaluation shows that this approach outperforms other lightweight approaches that apply additive noisification for differential privacy and/or support vector machines for learning in the applications with light data pattern complexities.Comment: 12 pages,IOTDI 201

    Clustering together to advance school improvement: working together in peer support with an external colleague

    Get PDF
    This research study explored how a group of rural primary schools, working together with the same school improvement partner (SIP), could positively affect the leadership of their schools through group strategic planning and the more efficient use of headteacher time and expertise. By using semi-structured interviews with headteachers and informal discussions with governors, the research investigated whether this method of collaborative working, with a single external professional facilitator, could enhance the leadership of the participating schools. The study concluded that the formation of such a collaborative group could have a positive impact on the leadership of the schools, the wellbeing of the headteachers themselves and the expertise of their governing bodies, when it was led by an external professional who had gained the respect and trust of all members of the group. Although the research specifically explored the role of a SIP held in common, its findings are transferable to any group of school leaders working together with a single external partner such as a national or local leader of education (NLE or LLE)

    Generating Artificial Data for Private Deep Learning

    Full text link
    In this paper, we propose generating artificial data that retain statistical properties of real data as the means of providing privacy with respect to the original dataset. We use generative adversarial network to draw privacy-preserving artificial data samples and derive an empirical method to assess the risk of information disclosure in a differential-privacy-like way. Our experiments show that we are able to generate artificial data of high quality and successfully train and validate machine learning models on this data while limiting potential privacy loss.Comment: Privacy-Enhancing Artificial Intelligence and Language Technologies, AAAI Spring Symposium Series, 201
    • …
    corecore