113 research outputs found

    Energy aware and privacy preserving protocols for ad hoc networks with applications to disaster management

    Get PDF
    Disasters can have a serious impact on the functioning of communities and societies. Disaster management aims at providing efficient utilization of resources during pre-disaster (e.g. preparedness and prevention) and post-disaster (e.g. recovery and relief) scenarios to reduce the impact of disasters. Wireless sensors have been extensively used for early detection and prevention of disasters. However, the sensor\u27s operating environment may not always be congenial to these applications. Attackers can observe the traffic flow in the network to determine the location of the sensors and exploit it. For example, in intrusion detection systems, the information can be used to identify coverage gaps and avoid detection. Data source location privacy preservation protocols were designed in this work to address this problem. Using wireless sensors for disaster preparedness, recovery and relief operations can have high deployment costs. Making use of wireless devices (e.g. smartphones and tablets) widely available among people in the affected region is a more practical approach. Disaster preparedness involves dissemination of information among the people to make them aware of the risks they will face in the event of a disaster and how to actively prepare for them. The content is downloaded by the people on their smartphones and tablets for ubiquitous access. As these devices are primarily constrained by their available energy, this work introduces an energy-aware peer-to-peer file sharing protocol for efficient distribution of the content and maximizing the lifetime of the devices. Finally, the ability of the wireless devices to build an ad hoc network for capturing and collecting data for disaster relief and recovery operations was investigated. Specifically, novel energy-adaptive mechanisms were designed for autonomous creation of the ad hoc network, distribution of data capturing task among the devices, and collection of data with minimum delay --Abstract, page iii

    Privacy models in wireless sensor networks: a survey

    Get PDF
    Wireless Sensor Networks (WSNs) are attracting attention from the research community. One of the key issues is to provide them with privacy protection. In recent years, a huge amount of contributions has been focused on this area. Surveys and literature reviews have also been produced to give a systematic view of the different approaches taken. However, no previous work has focused on privacy models, that is, the set of assumptions made to build the approach. In particular, this paper focuses on this matter by studying 41 papers of the last 5 years. We highlight the great differences appearing among related papers that could make them incompatible to be applied simultaneously. We propose a set of guidelines to build comprehensive privacy models so as to foster their comparability and suitability analysis for different scenarios.This work was supported by the MINECO Grant TIN2013-46469-R (Security and Privacy in the Internet of You (SPINY)) and the CAM Grant S2013/ICE-3095 (Cybersecurity,Data, and Risks (CIBERDINE)), which is cofunded by EuropeanFunds (FEDER). Furthermore, J.M. de Fuentes and L. González-Manzano were also partially supported by the Programa de Ayudas a la Movilidad of Carlos III University of Madrid

    A Distance-Based Data-Mule Scheduling Technique for Lesser Nodal Delay in Wireless Sensor Network

    Get PDF
    Nodal delay in wireless sensor network is an indisputable factor in the medium of communication. Factor such as changeability of communication devices, network topologies, packet-sizes, and transmission rate demands to develop data-mule queue scheduling technique. Our proposed data-mule scheduling technique accomplish this through simulations using standard software written in C# by controlling data-mule schedules that collects data from all the nodes connected to the hop. The scheme identifies the hierarchical positions of static source nodes and the distance of mobile source nodes from the hop with rescheduling based on the newly acquired distances. Source nodes applied with data-mule scheduling technique resulted to lower nodal delay. Transmission of packet-data is efficiently and effectively improved

    Wireless Sensor Networks (WSNs): Security and Privacy Issues and Solutions

    Get PDF
    Wireless sensor networks (WSNs) have become one of the current research areas, and it proves to be a very supportive technology for various applications such as environmental-, military-, health-, home-, and office-based applications. WSN can either be mobile wireless sensor network (MWSN) or static wireless sensor network (SWSN). MWSN is a specialized wireless network consisting of considerable number of mobile sensors, however the instability of its topology introduces several performance issues during data routing. SWSNs consisting of static nodes with static topology also share some of the security challenges of MWSNs due to some constraints associated with the sensor nodes. Security, privacy, computation and energy constraints, and reliability issues are the major challenges facing WSNs, especially during routing. To solve these challenges, WSN routing protocols must ensure confidentiality, integrity, privacy preservation, and reliability in the network. Thus, efficient and energy-aware countermeasures have to be designed to prevent intrusion in the network. In this chapter, we describe different forms of WSNs, challenges, solutions, and a point-to-point multi-hop-based secure solution for effective routing in WSNs

    A Framework for Incident Detection and notification in Vehicular Ad-Hoc Networks

    Get PDF
    The US Department of Transportation (US-DOT) estimates that over half of all congestion events are caused by highway incidents rather than by rush-hour traffic in big cities. The US-DOT also notes that in a single year, congested highways due to traffic incidents cost over $75 billion in lost worker productivity and over 8.4 billion gallons of fuel. Further, the National Highway Traffic Safety Administration (NHTSA) indicates that congested roads are one of the leading causes of traffic accidents, and in 2005 an average of 119 persons died each day in motor vehicle accidents. Recently, Vehicular Ad-hoc Networks (VANET) employing a combination of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communication have been proposed to alert drivers to traffic events including accidents, lane closures, slowdowns, and other traffic-safety issues. In this thesis, we propose a novel framework for incident detection and notification dissemination in VANETs. This framework consists of three main components: a system architecture, a traffic incident detection engine and a notification dissemination mechanism. The basic idea of our framework is to collect and aggregate traffic-related data from passing cars and to use the aggregated information to detect traffic anomalies. Finally, the suitably filtered aggregated information is disseminated to alert drivers about traffic delays and incidents. The first contribution of this thesis is an architecture for the notification of traffic incidents, NOTICE for short. In NOTICE, sensor belts are embedded in the road at regular intervals, every mile or so. Each belt consists of a collection of pressure sensors, a simple aggregation and fusion engine, and a few small transceivers. The pressure sensors in each belt allow every message to be associated with a physical vehicle passing over that belt. Thus, no one vehicle can pretend to be multiple vehicles and then, is no need for an ID to be assigned to vehicles. Vehicles in NOTICE are fitted with a tamper-resistant Event Data Recorder (EDR), very much like the well-known black-boxes onboard commercial aircraft. EDRs are responsible for storing vehicles behavior between belts such as acceleration, deceleration and lane changes. Importantly, drivers can provide input to the EDR, using a simple menu, either through a dashboard console or through verbal input. The second contribution of this thesis is to develop incident detection techniques that use the information provided by cars in detecting possible incidents and traffic anomalies using intelligent inference techniques. For this purpose, we developed deterministic and probabilistic techniques to detect both blocking incidents, accidents for examples, as well as non-blocking ones such as potholes. To the best of our knowledge, our probabilistic technique is the first VANET based automatic incident detection technique that is capable of detecting both blocking and non blocking incidents. Our third contribution is to provide an analysis for vehicular traffic proving that VANETs tend to be disconnected in many highway scenarios, consisting of a collection of disjoint clusters. We also provide an analytical way to compute the expected cluster size and we show that clusters are quite stable over time. To the best of our knowledge, we are the first in the VANET community to prove analytically that disconnection is the norm rather than the exceptions in VANETs. Our fourth contribution is to develop data dissemination techniques specifically adapted to VANETs. With VANETs disconnection in mind, we developed data dissemination approaches that efficiently propagate messages between cars and belts on the road. We proposed two data dissemination techniques, one for divided roads and another one for undivided roads. We also proposed a probabilistic technique used by belts to determine how far should an incident notification be sent to alert approaching drivers. Our fifth contribution is to propose a security technique to avoid possible attacks from malicious drivers as well as preserving driver\u27s privacy in data dissemination and notification delivery in NOTICE. We also proposed a belt clustering scheme to reduce the probability of having a black-hole in the message dissemination while reducing also the operational burden if a belt is compromised

    Publish/subscribe protocol in wireless sensor networks: improved reliability and timeliness

    Get PDF
    The rapidly-evolving demand of applications using wireless sensor networks in several areas such as building and industrial automation or smart cities, among other, makes it necessary to determine and provide QoS support mechanisms which can satisfy the requirements of applications. In this paper we propose a mechanism that establishes different QoS levels, based on Publish/Subscribe model for wireless networks to meet application requirements, to provide reliable delivery of packet and timeliness. The first level delivers packets in a best effort way. The second one intends to provide reliable packet delivery with a novel approach for Retransmission Timeout (RTO) calculation, which adjusts the RTO depending on the subscriber Packet Delivery Ratio (PDR). The third one provides the same reliable packet delivery as the second one, but in addition, it provides data aggregation trying to be efficient in terms of energy consumption and the use of network bandwidth. The last one provides timeliness in the packet delivery. We evaluate each QoS Level with several performance metrics such as PDR, Message Delivery Ratio, Duplicated and Retransmitted Packet Ratio and Packet Timeliness Ratio to demonstrate that our proposal provides significant improvements based on the increase of the PDR obtained.Peer ReviewedPostprint (author's final draft

    A survey on data storage and information discovery in the WSANs-based edge computing systems

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. In the post-Cloud era, the proliferation of Internet of Things (IoT) has pushed the horizon of Edge computing, which is a new computing paradigm with data are processed at the edge of the network. As the important systems of Edge computing, wireless sensor and actuator networks (WSANs) play an important role in collecting and processing the sensing data from the surrounding environment as well as taking actions on the events happening in the environment. In WSANs, in-network data storage and information discovery schemes with high energy efficiency, high load balance and low latency are needed because of the limited resources of the sensor nodes and the real-time requirement of some specific applications, such as putting out a big fire in a forest. In this article, the existing schemes of WSANs on data storage and information discovery are surveyed with detailed analysis on their advancements and shortcomings, and possible solutions are proposed on how to achieve high efficiency, good load balance, and perfect real-time performances at the same time, hoping that it can provide a good reference for the future research of the WSANs-based Edge computing systems

    FRIEND: A Cyber-Physical System for Traffic Flow Related Information Aggregation and Dissemination

    Get PDF
    The major contribution of this thesis is to lay the theoretical foundations of FRIEND — A cyber-physical system for traffic Flow-Related Information aggrEgatioN and Dissemination. By integrating resources and capabilities at the nexus between the cyber and physical worlds, FRIEND will contribute to aggregating traffic flow data collected by the huge fleet of vehicles on our roads into a comprehensive, near real-time synopsis of traffic flow conditions. We anticipate providing drivers with a meaningful, color-coded, at-a-glance view of flow conditions ahead, alerting them to congested traffic. FRIEND can be used to provide accurate information about traffic flow and can be used to propagate this information. The workhorse of FRIEND is the ubiquitous lane delimiters (a.k.a. cat\u27s eyes) on our roadways that, at the moment, are used simply as dumb reflectors. Our main vision is that by endowing cat\u27s eyes with a modest power source, detection and communication capabilities they will play an important role in collecting, aggregating and disseminating traffic flow conditions to the driving public. We envision the cat\u27s eyes system to be supplemented by road-side units (RSU) deployed at regular intervals (e.g. every kilometer or so). The RSUs placed on opposite sides of the roadway constitute a logical unit and are connected by optical fiber under the median. Unlike inductive loop detectors, adjacent RSUs along the roadway are not connected with each other, thus avoiding the huge cost of optical fiber. Each RSU contains a GPS device (for time synchronization), an active Radio Frequency Identification (RFID) tag for communication with passing cars, a radio transceiver for RSU to RSU communication and a laptop-class computing device. The physical components of FRIEND collect traffic flow-related data from passing vehicles. The collected data is used by FRIEND\u27s inference engine to build beliefs about the state of the traffic, to detect traffic trends, and to disseminate relevant traffic flow-related information along the roadway. The second contribution of this thesis is the development of an incident classification and detection algorithm that can be used to classify different types of traffic incident Then, it can notify the necessary target of the incident. We also compare our incident detection technique with other VANET techniques. Our third contribution is a novel strategy for information dissemination on highways. First, we aim to prevent secondary accidents. Second, we notify drivers far away from the accident of an expected delay that gives them the option to continue or exit before reaching the incident location. A new mechanism tracks the source of the incident while notifying drivers away from the accident. The more time the incident stays, the further the information needs to be propagated. Furthermore, the denser the traffic, the faster it will backup. In high density highways, an incident may form a backup of vehicles faster than low density highways. In order to satisfy this point, we need to propagate information as a function of density and time
    • …
    corecore