34,432 research outputs found

    Customers Behavior Modeling by Semi-Supervised Learning in Customer Relationship Management

    Full text link
    Leveraging the power of increasing amounts of data to analyze customer base for attracting and retaining the most valuable customers is a major problem facing companies in this information age. Data mining technologies extract hidden information and knowledge from large data stored in databases or data warehouses, thereby supporting the corporate decision making process. CRM uses data mining (one of the elements of CRM) techniques to interact with customers. This study investigates the use of a technique, semi-supervised learning, for the management and analysis of customer-related data warehouse and information. The idea of semi-supervised learning is to learn not only from the labeled training data, but to exploit also the structural information in additionally available unlabeled data. The proposed semi-supervised method is a model by means of a feed-forward neural network trained by a back propagation algorithm (multi-layer perceptron) in order to predict the category of an unknown customer (potential customers). In addition, this technique can be used with Rapid Miner tools for both labeled and unlabeled data

    Fidelity-Weighted Learning

    Full text link
    Training deep neural networks requires many training samples, but in practice training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality versus-quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we propose "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on two tasks in information retrieval and natural language processing where we outperform state-of-the-art alternative semi-supervised methods, indicating that our approach makes better use of strong and weak labels, and leads to better task-dependent data representations.Comment: Published as a conference paper at ICLR 201
    corecore