4 research outputs found

    Settling for limited privacy: how much does it help?

    Get PDF
    This thesis explores practical and theoretical aspects of several privacy-providing technologies, including tools for anonymous web-browsing, verifiable electronic voting schemes, and private information retrieval from databases. State-of-art privacy-providing schemes are frequently impractical for implementational reasons or for sheer information-theoretical reasons due to the amount of information that needs to be transmitted. We have been researching the question of whether relaxing the requirements on such schemes, in particular settling for imperfect but sufficient in real-world situations privacy, as opposed to perfect privacy, may be helpful in producing more practical or more efficient schemes. This thesis presents three results. The first result is the introduction of caching as a technique for providing anonymous web-browsing at the cost of sacrificing some functionality provided by anonymizing systems that do not use caching. The second result is a coercion-resistant electronic voting scheme with nearly perfect privacy and nearly perfect voter verifiability. The third result consists of some lower bounds and some simple upper bounds on the amount of communication in nearly private information retrieval schemes; our work is the first in-depth exploration of private information schemes with imperfect privacy

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Using Caching For Browsing Anonymity

    Get PDF
    this paper, we propose a caching proxy system for allowing users to retrieve data from the World-Wide Web in a way that would provide recipient unobservability by a third party and sender unobservability by the recipient and thus dispose with intersection attacks, and report on the prototype we built using Googl
    corecore