7,840 research outputs found

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    A Novel Side-Channel in Real-Time Schedulers

    Full text link
    We demonstrate the presence of a novel scheduler side-channel in preemptive, fixed-priority real-time systems (RTS); examples of such systems can be found in automotive systems, avionic systems, power plants and industrial control systems among others. This side-channel can leak important timing information such as the future arrival times of real-time tasks.This information can then be used to launch devastating attacks, two of which are demonstrated here (on real hardware platforms). Note that it is not easy to capture this timing information due to runtime variations in the schedules, the presence of multiple other tasks in the system and the typical constraints (e.g., deadlines) in the design of RTS. Our ScheduLeak algorithms demonstrate how to effectively exploit this side-channel. A complete implementation is presented on real operating systems (in Real-time Linux and FreeRTOS). Timing information leaked by ScheduLeak can significantly aid other, more advanced, attacks in better accomplishing their goals

    Applications of Cyber Threat Intelligence (CTI) in Financial Institutions and Challenges in Its Adoption

    Get PDF
    The critical nature of financial infrastructures makes them prime targets for cybercriminal activities, underscoring the need for robust security measures. This research delves into the role of Cyber Threat Intelligence (CTI) in bolstering the security framework of financial entities and identifies key challenges that could hinder its effective implementation. CTI brings a host of advantages to the financial sector, including real-time threat awareness, which enables institutions to proactively counteract cyber-attacks. It significantly aids in the efficiency of incident response teams by providing contextual data about attacks. Moreover, CTI is instrumental in strategic planning by providing insights into emerging threats and can assist institutions in maintaining compliance with regulatory frameworks such as GDPR and CCPA. Additional applications include enhancing fraud detection capabilities through data correlation, assessing and managing vendor risks, and allocating resources to confront the most pressing cyber threats. The adoption of CTI technologies is fraught with challenges. One major issue is data overload, as the vast quantity of information generated can overwhelm institutions and lead to alert fatigue. The issue of interoperability presents another significant challenge; disparate systems within the financial sector often use different data formats, complicating seamless CTI integration. Cost constraints may also inhibit the adoption of advanced CTI tools, particularly for smaller institutions. A lack of specialized skills necessary to interpret CTI data exacerbates the problem. The effectiveness of CTI is contingent on its accuracy, and false positives and negatives can have detrimental impacts. The rapidly evolving nature of cyber threats necessitates real-time updates, another hurdle for effective CTI implementation. Furthermore, the sharing of threat intelligence among entities, often competitors, is hampered by mistrust and regulatory complications. This research aims to provide a nuanced understanding of the applicability and limitations of CTI within the financial sector, urging institutions to approach its adoption with a thorough understanding of the associated challenges

    Horizontal Cybersurveillance Through Sentiment Analysis

    Full text link
    This Essay describes emerging big data technologies that facilitate horizontal cybersurveillance. Horizontal cybersurveillance makes possible what has been termed as “sentiment analysis.” Sentiment analysis can be described as opinion mining and social movement forecasting. Through sentiment analysis, mass cybersurveillance technologies can be deployed to detect potential terrorism and state conflict, predict protest and civil unrest, and gauge the mood of populations and subpopulations. Horizontal cybersurveillance through sentiment analysis has the likely result of chilling expressive and associational freedoms, while at the same time risking mass data seizures and searches. These programs, therefore, must be assessed as adversely impacting a combination of constitutional rights, such as simultaneously affecting both First and Fourth Amendment freedoms

    Artificial intelligence and UK national security: Policy considerations

    Get PDF
    RUSI was commissioned by GCHQ to conduct an independent research study into the use of artificial intelligence (AI) for national security purposes. The aim of this project is to establish an independent evidence base to inform future policy development regarding national security uses of AI. The findings are based on in-depth consultation with stakeholders from across the UK national security community, law enforcement agencies, private sector companies, academic and legal experts, and civil society representatives. This was complemented by a targeted review of existing literature on the topic of AI and national security. The research has found that AI offers numerous opportunities for the UK national security community to improve efficiency and effectiveness of existing processes. AI methods can rapidly derive insights from large, disparate datasets and identify connections that would otherwise go unnoticed by human operators. However, in the context of national security and the powers given to UK intelligence agencies, use of AI could give rise to additional privacy and human rights considerations which would need to be assessed within the existing legal and regulatory framework. For this reason, enhanced policy and guidance is needed to ensure the privacy and human rights implications of national security uses of AI are reviewed on an ongoing basis as new analysis methods are applied to data

    Fundamental Concepts of Cyber Resilience: Introduction and Overview

    Full text link
    Given the rapid evolution of threats to cyber systems, new management approaches are needed that address risk across all interdependent domains (i.e., physical, information, cognitive, and social) of cyber systems. Further, the traditional approach of hardening of cyber systems against identified threats has proven to be impossible. Therefore, in the same way that biological systems develop immunity as a way to respond to infections and other attacks, so too must cyber systems adapt to ever-changing threats that continue to attack vital system functions, and to bounce back from the effects of the attacks. Here, we explain the basic concepts of resilience in the context of systems, discuss related properties, and make business case of cyber resilience. We also offer a brief summary of ways to assess cyber resilience of a system, and approaches to improving cyber resilience.Comment: This is a preprint version of a chapter that appears in the book "Cyber Resilience of Systems and Networks," Springer 201
    corecore