44,207 research outputs found

    VIRTUAL ROBOT LOCOMOTION ON VARIABLE TERRAIN WITH ADVERSARIAL REINFORCEMENT LEARNING

    Get PDF
    Reinforcement Learning (RL) is a machine learning technique where an agent learns to perform a complex action by going through a repeated process of trial and error to maximize a well-defined reward function. This form of learning has found applications in robot locomotion where it has been used to teach robots to traverse complex terrain. While RL algorithms may work well in training robot locomotion, they tend to not generalize well when the agent is brought into an environment that it has never encountered before. Possible solutions from the literature include training a destabilizing adversary alongside the locomotive learning agent. The destabilizing adversary aims to destabilize the agent by applying external forces to it, which may help the locomotive agent learn to deal with unexpected scenarios. For this project, we will train a robust, simulated quadruped robot to traverse a variable terrain. We compare and analyze Proximal Policy Optimization (PPO) with and without the use of an adversarial agent, and determine which use of PPO produces the best results

    Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving

    Full text link
    Tactical decision making for autonomous driving is challenging due to the diversity of environments, the uncertainty in the sensor information, and the complex interaction with other road users. This paper introduces a general framework for tactical decision making, which combines the concepts of planning and learning, in the form of Monte Carlo tree search and deep reinforcement learning. The method is based on the AlphaGo Zero algorithm, which is extended to a domain with a continuous state space where self-play cannot be used. The framework is applied to two different highway driving cases in a simulated environment and it is shown to perform better than a commonly used baseline method. The strength of combining planning and learning is also illustrated by a comparison to using the Monte Carlo tree search or the neural network policy separately

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar
    • …
    corecore