
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-18-2020

VIRTUAL ROBOT LOCOMOTION ON VARIABLE TERRAIN WITH VIRTUAL ROBOT LOCOMOTION ON VARIABLE TERRAIN WITH

ADVERSARIAL REINFORCEMENT LEARNING ADVERSARIAL REINFORCEMENT LEARNING

Phong Nguyen

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages

VIRTUAL ROBOT LOCOMOTION ON VARIABLE TERRAIN WITH
ADVERSARIAL REINFORCEMENT LEARNING

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Phong Nguyen

May 2020

© 2020

Phong Nguyen

ALL RIGHTS RESERVED

The Designated Committee Approves the Master's Project Titled

VIRTUAL ROBOT LOCOMOTION ON VARIABLE TERRAIN WITH
ADVERSARIAL REINFORCEMENT LEARNING

by

Phong Nguyen

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2020

Prof. Robert Chun

Department of Computer Science

Prof. Jon Pearce

Prof. Chris Tseng

Department of Computer Science

Department of Computer Science

ABSTRACT

VIRTUAL ROBOT LOCOMOTION ON VARIABLE TERRAIN WITH
ADVERSARIAL REINFORCEMENT LEARNING

by Phong Nguyen

Reinforcement Learning (RL) is a machine learning technique where an agent learns

to perform a complex action by going through a repeated process of trial and error to

maximize a well-defined reward function. This form of learning has found applications in

robot locomotion where it has been used to teach robots to traverse complex terrain.

While RL algorithms may work well in training robot locomotion, they tend to not

generalize well when the agent is brought into an environment that it has never

encountered before. Possible solutions from the literature include training a destabilizing

adversary alongside the locomotive learning agent. The destabilizing adversary aims to

destabilize the agent by applying external forces to it, which may help the locomotive

agent learn to deal with unexpected scenarios. For this project, we will train a robust,

simulated quadruped robot to traverse a variable terrain. We compare and analyze

Proximal Policy Optimization (PPO) with and without the use of an adversarial agent,

and determine which use of PPO produces the best results.

 v

ACKNOWLEDGEMENTS

 I would like to thank my advisor Prof. Robert Chun for his patience and guidance

throughout the duration of the project.

 vi

TABLE OF CONTENTS

List of Tables ... viii	
List of Figures .. ix	

1	 Introduction ... 1	

2	 Background ... 2	
2.1	 Robot Locomotion on Variable Terrain .. 2	
2.2	 Reinforcement Learning ... 2	
2.3	 Reinforcement Learning in Rich Environments ... 3	
2.4	 Reinforcement Learning with an Adversary ... 4	
2.5	 Robust Adversarial Reinforcement Learning ... 5	
2.6	 Reinforcement Learning for Slope Climbing ... 6	

3	 Implementation ... 7	

4	 Experiment and Results .. 10	
4.1	 Project Settings ... 10	
4.2	 Terminology and Components .. 11	

4.2.1	 Learning Environment .. 11	
4.2.2	 Academy ... 12	
4.2.3	 Terminology ... 13	
4.2.4	 Quadruped Crawler Agent .. 14	
4.2.5	 Adversary Agent ... 18	
4.2.6	 Terrain .. 21	

4.3	 Training Conditions .. 22	
4.3.1	 Flat Solo .. 22	
4.3.2	 Flat Adversarial .. 23	
4.3.3	 Flat Adversary .. 24	
4.3.4	 Sloped Solo (Baseline) ... 24	
4.3.5	 Sloped Adversarial ... 26	
4.3.6	 Sloped Adversary ... 27	

4.4	 Training Results .. 27	
4.5	 Test Scenarios ... 28	

4.5.1	 Flat .. 29	
4.5.2	 Adversary Flat .. 30	
4.5.3	 Sloped ... 31	
4.5.4	 Adversary Sloped ... 32	
4.5.5	 Sloped with Projectiles ... 32	
4.5.6	 Sloped with Varied Mass .. 33	
4.5.7	 Sloped with Projectiles and Varied Mass ... 36	
4.5.8	 Sloped with Varied Friction ... 38	
4.5.9	 Sloped with Projectiles and Varied Friction 39	

5	 Conclusion .. 40	

 vii

Appendix A: Source Code .. 44	
CrawlerAcademy2.cs .. 44	
CrawlerAdversaryAgent.cs ... 48	
CrawlerAgent2.cs .. 52	
GroundContact2.cs .. 55	
GroundGenerator.cs .. 58	
ProjectileScript.cs ... 60	
Testable.cs ... 60	

 viii

LIST OF TABLES

Table 1 Test on Flat Terrain .. 30	

Table 2 Test on Flat Terrain with Adversary Enabled .. 30	

 ix

LIST OF FIGURES

Fig. 1. Example of inverted pendulum on a moveable cart, with point mass m and pivot
attached to top of cart [21]. ... 9	

Fig. 2. The high-level components of ML-agents [24]. .. 11	

Fig. 3. The main components in the Learning Environment that a researcher will have to
configure when utilizing ML-agents [24]. .. 13	

Fig. 4. Image of crawler in its default pose. .. 15	

Fig. 5. Agent and its range of motion on upper leg (left image) and foreleg (right image).
 ... 15	

Fig. 6. Leg angle limits in degrees are shown for upper leg (left image) and foreleg (right
image), with Low Angular Limit representing the minimum angle a limb is capable
of rotation, and High Angular Limit representing the maximum angle. The angles
are shown in degrees relative to the legs’ default position. 16	

Fig. 7. Example of a surface normal (blue arrow) of a curved terrain [26]. 18	

Fig. 8. Crawler agent with adversarial force applied to its body, represented by the
colored arrow. ... 20	

Fig. 9. Sample of a randomly-generated terrain with crawler's starting position located at
the axis arrows. ... 22	

Fig. 10. Agent on flat terrain. .. 23	

Fig. 11. Agent on flat terrain with adversarial force enabled. .. 24	

Fig. 12. Agent on sloped terrain. ... 26	

Fig. 13. Agent on sloped terrain with adversarial force enabled. 27	

Fig. 14. Graphs show cumulative reward over multiple episodes for training baseline
(left) and adversarial (right) brains. Initial arc indicates the portion of the training
where the brains were trained on a flat plain. The following parts of the graphs
indicate when training was moved onto gradually-increasing sloped terrain. For the
adversarial brains, the blue curve shows the reward for the agent brain, while the red
curve shows the reward for the adversary brain. .. 28	

Fig. 15. Testing session with a projectile randomly fired at the agent. 29	

 x

Fig. 16. The graph shows how the adversarial brain was more robust to changes in slope
angle steepness. ... 31	

Fig. 17. The graph shows how the adversarial brain was more robust to changes in slope
angle steepness while the trained adversary actively applied forces to the agent. 32	

Fig. 18. The graph shows how the adversarial brain was more robust to changes in slope
angle steepness while projectiles were randomly thrown at the agent. 33	

Fig. 19. The above graphs show how the adversarial brain was generally more robust to
changes in mass. The slopes in the graph titles refer to the max slope in degrees,
with minimum slope 0 degrees. .. 34	

Fig. 20. The graph for Random Slopes refers to the default test case with mass set to 1
unit. The graphs depict the same data as the previous set of graphs (Fig. 19), but
with mass shown as constant and with slope angle increasing. The adversarial brain
generally performed better when mass was high. ... 35	

Fig. 21. The graph for Random Slopes with Projectile(top-left) refers to the test with
mass set to 1 unit. The graphs show how the adversarial brain was more robust to
changes in slope angle steepness while projectiles were randomly thrown at the
agent, and with different body masses set for the agent. .. 37	

Fig. 22. The graph for Random Slopes(top-right) refers to the default test case with
friction set to 0.6. The graphs show how the adversarial brain was more robust to
changes in slope angle steepness when traversing terrain of varying friction values.
 ... 38	

Fig. 23. The Random Slopes with Projectile graph refers to the default test case with
friction set to 0.6. The graphs show how the adversarial brain was more robust to
changes in slope angle steepness when traversing terrain of varying friction values
and while being bombarded with random projectiles. .. 39	

 1

1 INTRODUCTION

With the growing popularity of machine learning (ML) there has been increasingly

more interest in applying ML techniques to fields where an agent may encounter

situations that do not exactly match up with what it has learned, such as with creating

robots with improved robustness to various environments and real-world scenarios [1],

[2], [3]. Robots are relevant today and in the future because of their applications in

environments where using humans may not be safe, hospitable or efficient, such as with

bomb detection and deactivation, navigation through radiation-littered environments, and

repetitive manufacturing tasks [4], [5], [6], [7], [8]. Creating an efficient robot requires

the robot to be sufficiently robust, so that it can effectively perform its desired actions in

any situation. Reinforcement learning (RL) with the use of an adversarial agent is one

such proposed solution to providing robustness to robots without having to train the robot

in every perceivable environment [9].

RL has been applied to robot motion. In a closed testing environment, a physical

robot may only be exposed to a specific set of training environments, where it may

eventually learn to perform well in such environments. However, when exposed to the

real world, such robots may fail to perform when they encounter unexpected situations

that they had never learned to deal with during the training phase [9]. In this paper, we

explore the usage of RL techniques to train a virtual locomotive agent with the robustness

to traverse variable terrain and situations that it has never encountered before.

 2

2 BACKGROUND

2.1 Robot Locomotion on Variable Terrain

The focus of this project is on legged robot locomotion on variable terrain. Legged

locomotion is generally considered more versatile than wheeled locomotion because of

its resistance to getting stuck on malleable terrain. Whereas a wheeled robot or vehicle

would be prone to getting stuck in mud, snow, and sand, a legged robot would be able to

walk through such environments [10]. Likewise, legs also allow for traversal through

uneven and debris-filled terrain, which would be a challenge for a wheeled vehicle or

robot [11]. These advantages make legged robots suited for applications such as search

and rescue missions [11] and carrying cargo through battlefields and rough terrain [12].

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a type of ML where the agent learns to perform a

complex action, such as walking, by learning to perform specific smaller actions that

maximize an accumulated reward value and eventually lead up to the complex action

being performed. Much like training a dog, RL is a method of trial and error where the

agent is given more rewards for performing actions that are explicitly defined by the

programmer to be correlated with leading to the target action. For example, if our target

action is to walk from Point A to Point B, then a possible condition that would yield high

reward would be for the agent to perform some action that puts it closer to Point B. Based

on its current state and past experiences, the agent would perform a specific action, such

as rotating a limb a specific amount, that it thinks will maximize its reward. The result of

 3

this reward maximization would potentially result in the agent performing the desired

action when played out in successive steps. Each reward signal is defined by the

programmer, and how the rewards are assigned may greatly influence how well the agent

learns. However, designing a reward that corresponds with a desired action can be tricky.

Heess et al. [13] suggested that it is not always obvious what a “right” reward function

should be, and that picking a “wrong” reward function could lead to unexpected and

undesired results [13]. As an answer to this, Heess et al. [13] proposed that rather than

train the agent with a complex reward function, the agent would learn complex actions if

it were exposed to complex training conditions with a simple reward function.

2.3 Reinforcement Learning in Rich Environments

 In their paper, Heess et al. [13] found that they could create a robust agent by training

it in rich and varied environments while keeping its reward function simple. Their motive

for a simple reward function comes from the tendency of well-defined rewards to overfit

when trained in environments with minor variances, which results in the trained agent

being over-specialized to its training environment and ill-suited for traversing varied

environments that it has never encountered before. Additionally, the difficulty of crafting

a reward function to encompass every use case that the agent may encounter during the

testing phase makes it more desirable for the programmer to keep the reward function

simple. In this case, Heess et al.'s [13] agent received rewards entirely based on its

progress in moving towards the forward direction, and nothing else. To create a robust

locomotive agent, Heess et al. [13] traded off a complex reward function for a complex

training environment. Their training environment was a procedural obstacle course with

 4

varying degrees of difficulty, making use of transfer learning to allow the agent to

gradually train in more difficult environments as it became proficient with its current

training grounds. Transfer learning is a ML technique that allows knowledge gained from

one training environment to be “transferred” and applied to another similar training

environment to improve training efficiency [14]. The procedural training environment

included various adjustable parameters such as floor steepness, unevenness, and gap

distance. Heess et al. [13] concluded their research with the following results: "simple

rewards lead to effective motion; transfer training leads to faster results; diverse training

environments leads to robustness" [13].

2.4 Reinforcement Learning with an Adversary

 Training an agent as a physical robot adds extra challenges that must be addressed

during the training process because the environmental awareness of the learning agent is

restricted by the limitations of technology. In other words, while we may be able to freely

feed specific environmental parameters into a virtual agent as part of its observations,

doing the same with a physical robot is constrained by the available physical components

that the researcher has at hand. Sometimes those components may not be sufficient for

accomplishing what the researcher had desired. Pinto et al. [15] encountered this

limitation while training a physical robot to grasp objects, where they found that the force

sensor in their robot's hand was unable to accurately determine what a good grip "felt"

like since it was unable to take the object's orientation and other parameters into

consideration. They hypothesized that the robot would learn to grip objects more

effectively if it were to be discouraged from having a bad grip. Their proposed solution

 5

was to train an adversarial robot alongside the grasping robot that would learn to snatch

the object from the grasper's hand. The idea was that the presence of an adversary would

lead to an arms race where the grasping robot would learn firmer grasping technique as

the adversarial snatching robot learned to exploit weaknesses in the grasper's grip on the

object. The results supported their hypothesis and showed that an adversarial approach

required less data and was more robust than the control case trained without an adversary

[15].

2.5 Robust Adversarial Reinforcement Learning

 While Pinto et al.'s [15] research was focused on compensating for the restrictions of

physical hardware, Pinto et al. [9] found that normal RL did not generalize well with

varying environments even in a virtual setting. Like with Pinto et al.'s [15] research, their

proposed solution was Robust Adversarial Reinforcement Learning (RARL), where an

adversary is trained alongside the learning agent and attempts to disrupt its learning

progress. With their RARL experiment, Pinto et al. [9] set out to train a robust, virtual

locomotive agent that is capable of traversing varied terrain that it has never encountered

before. Unlike with Pinto et al.'s [15] research, the RARL experiment was conducted on

virtual agents, so there were opportunities to give the adversary capabilities that a

physical entity would not be capable of. Rather than simply make the adversary

physically interrupt the learning agent, Pinto et al. [9] gave the adversary “super powers”

and made it capable of adjusting physics values and applying external forces directly to

the learning agent, to create an adversary that is capable of exploiting weaknesses based

on domain knowledge. Making use of the adversary and various environment settings

 6

such as differing friction and mass values, they found that the agent trained with RARL

was more effective at generalizing its locomotive capabilities to more varied terrain,

compared to the baseline trained with RL without an adversary. Additionally, the RARL

adversary that makes use of domain knowledge was more effective at putting the learning

agent in situations that resulted in lesser rewards, which resulted in the agent discovering

more robust locomotive actions [9].

2.6 Reinforcement Learning for Slope Climbing

 Garg [16] made use of RL to train a virtual agent to climb various slopes. Garg [16]

performed experiments using Trust Region Policy Optimization (TRPO) [17] and Deep

Deterministic Policy Gradients (DDPG) [18] and compared which of the two would be

more effective for training a slope-climbing agent. Garg [16] put a crawler agent through

numerous tests to determine which algorithm was more effective, starting off with a flat

terrain, attempting flat terrain with steps, and then gradually moving on to sloped

surfaces. In their initial tests with flat planes and steps, Garg [16] found that TRPO was

roughly three times faster at yielding viable locomotive agents than DDPG, while also

producing agents that were found to be more stable, flipping themselves over at a less

frequent rate than those trained with DDPG. Because of the combination of speed and

stability provided by TRPO, Garg [16] decided to perform the final sloped tests entirely

with TRPO. Using TRPO as the RL algorithm, Garg's [16] agent learned to climb slopes

of 9 degrees, but struggled to climb steeper slopes due to the friction of its feet being

insufficient to stick to the slope surface. Garg's [16] solution was to train the agent on

grooved terrain, which allowed the agent to hook its feet onto the grooves in the terrain

 7

and climb slopes of up to 36 degrees. As an additional test, each slope was tested with a

trial where only horizontal velocity was considered for its reward function, and a second

trial where both horizontal and vertical velocity were considered. Generally, the tests

with both horizontal and vertical velocity considered for the reward function were more

successful and allowed the agent to climb steeper slopes. This is an example of how

designing a well-defined reward function is important for the success of the agent's

learning. After successfully training the agent to climb 36 degree slopes, Garg [16]

decided to utilize transfer learning to train their agent on more complex tasks, such as

climbing a slope with potholes. Unfortunately, even with the use of transfer learning,

Garg's [16] agent was unable to climb these slopes any steeper than 18 degrees. The

agent was trained with the same reward function as the previous slope-climbing agent,

and was unable to adapt to the new terrain.

3 IMPLEMENTATION

While bipedal humanoid locomotion is one of the ultimate goals of locomotive ML,

we chose to reduce the scope of our locomotive ML learning model so that it was

possible to complete with our limited hardware. A quadruped crawler was chosen over a

humanoid for this experiment because it is a simpler model, with fewer degrees of

freedom, making it a more viable approach with our limited hardware [13]. Unlike a

humanoid that stands upright on two legs with its center of mass placed far above its legs,

a quadruped crawler stands on all four legs with its center of mass placed closer to the

ground and evenly distributed between all four legs. Like a four-legged table, this

 8

standing configuration gives the crawler a centralized weight distribution and the

advantage of being better balanced, so the agent does not need to solve the inverted

pendulum problem with the complexity that a biped humanoid would need to for it to

learn locomotion [19], [20].

The inverted pendulum problem is a balance problem where the goal is to maintain

the balance of a mass atop a balancing pivot, illustrated in Fig. 1. A normal pendulum has

its center of mass hanging below its pivot point, which puts its resting equilibrium

position directly below the pivot point. An inverted pendulum on the other hand, has its

center of mass above its pivot point, so if left unattended, the mass will swing along the

balancing pivot point until it runs out of energy and rests at its equilibrium position below

the pivot. A common representation of the inverted pendulum problem is balancing a

glass of liquid on top of a stick. In order to maintain balance and prevent the glass from

falling off, the stick is allowed to move horizontally or freely pivot along its point of

contact between itself and the floor. The glass, in turn, passively reacts to the stick's

movements, moving along with it and pivoting due to the effects of the stick's motions

and gravity.

 9

Fig. 1. Example of inverted pendulum on a moveable cart, with point mass m and pivot
attached to top of cart [21].

The image of a mass balanced atop a stick can be applied to a humanoid when seen

from the side, where the mass is the humanoid's torso, and the stick is the humanoid's

legs. Whenever the humanoid stands with both legs side-by-side, or with one leg lifted,

the humanoid must solve the inverted pendulum problem in order to maintain balance

[22]. It can easily be seen that biped forward locomotion is the act of the humanoid lifting

one leg up and forward, intentionally falling forward, and then placing the lifted leg back

down to regain balance, thus taking a step forward in the resulting process.

 10

4 EXPERIMENT AND RESULTS

For our experiment, we utilized the Unity game engine along with the Unity Machine

Learning Agents Toolkit (ML-Agents) to train a virtual agent to traverse variable terrain.

We used Proximal Policy Optimization (PPO) [23] as the ML algorithm for both the

agent and the adversary because it was included as part of the ML-Agents package and

was ready to use. The Unity game engine provided us with basic 3D game development

tools such as a built-in 3D physics simulation engine and the ease of implementing

additional features with C# code. Unity allows the user to create any kind of controllable

agent that is capable of interacting with its environment through physics contact and

collisions, which made it ideal for creating and training a locomotive agent controlled by

our machine learning model. The ML-Agents package is a machine learning framework

added on top of Unity that enables the user to train and test agents using the included

PPO algorithm or with their own algorithm. The Unity ML-agents package made it

simple to get started with a physics-based ML training environment, and even included

some basic sample projects to expand upon.

4.1 Project Settings

 We made use of the ML-Agents Toolkit's Crawler project as the basis for our

experiment. The Crawler project included everything required to train a quadruped

crawler agent, such as the premade crawler agent object, as well as a scene for training

the agent in. By default, the Crawler project was a barebones project that only included a

setup for training the crawler on a flat plane, but we had made enhancements to the

project to allow for training and testing on more complex terrain. In the following

 11

subsections, we will go over each of the components of the project, as well as the settings

used in each test.

4.2 Terminology and Components

4.2.1 Learning Environment

 At a high level, the ML-agents package is made up of three main components: the

Learning Environment, the Python API, and the External Communicator, as seen in Fig.

2. The Learning Environment includes a Unity scene and all agents and interactive

objects that exist within that scene. In Unity, a scene is a file that contains the

environment and all relevant objects and scripts that are needed to view or play the scene.

In the case of ML-agents, the Learning Environment is a scene that includes the terrain,

agents, and relevant scripts that are required for making the agents run and for training to

take place. The Python API is an external toolset that includes all the machine learning

algorithm functionality used for training agents. The Python API interacts with the

Learning Environment through the use of the External Communicator, which exists in

and is a component of the Learning Environment.

Fig. 2. The high-level components of ML-agents [24].

 12

4.2.2 Academy

 The entity that we train is called the agent. The agent is capable of interacting with its

environment or other agents, and learns by accumulating knowledge in its brain. By

utilizing Unity's included game development tools, the user can build an agent from the

ground up, and customize it to fit the needs of the training experiment. The agent

performs actions by first taking observations of its surroundings and environment, then it

makes decisions on what actions to perform. The agent then continuously performs that

action each time interval until its next decision step is reached where it chooses a

different action to perform. The agent’s decision making is done by its brain.

 A brain in the context of Unity ML agents is a component that stores knowledge and

issues actions based on current physical observations and its accumulated knowledge

[24]. In ML agents, we train brains using the agent as the brain's means for interacting

with its environment. For example, a crawler agent has a brain that can be swapped out

depending on which environment and settings we want to train it with. After training our

brains, we can swap out the brain assigned to the crawler depending on which trained

brain we want to observe in a given testing environment. To improve the efficiency of the

training process on a single machine, we can train multiple brains concurrently through

the use of an academy, illustrated with its related components in Fig. 3.

 An academy is the central processing center that orchestrates observations and actions

among the brains being trained, keeping agents synchronized as it issues them

commands. Agents with the same brain linked to an academy share the same

 13

knowledgebase, so separate instances of an agent will make decisions based on the same

shared knowledge, and can be considered the same agent [25].

Fig. 3. The main components in the Learning Environment that a researcher will have to
configure when utilizing ML-agents [24].

4.2.3 Terminology

 In general, reinforcement learning is centered around tailoring a reward signal in

order to steer the learning agent towards learning the intended motions or actions. The

reward is an accumulated and stored value that is used to quantify if the agent is on the

right track or not, and it is the researcher's job to tailor the reward according to the

desired goal. In this case, our goal was to create a robust locomotive agent that is capable

of traversing variable terrain. However, because such a complex goal is not specific

enough, we broke down the goal into smaller components in order to determine how to

assign the reward. We decided to have the agent first learn to walk by having it move

towards a target point located at the end of a long running plane. Our criteria for properly

 14

walking towards the goal included facing the target position and moving towards the

target, with a time penalty deducted from the reward as time progressed.

The agent attempts to increase its accumulated reward by performing actions issued

by the brain. In the context of ML-Agents, an action is a specific act that the agent can

physically perform, such as rotating a limb by a specific amount, along a specific axis.

The agent decides what action to perform based on its perceived state of itself and the

world, called observations.

 The agent uses observations to determine what its current state is in the world so that

it can determine how to react based on its accumulated knowledge. Observations are data

and values of the agent and interactive objects within the environment that are collected

by the agent during each step of the physics update.

 A step is a fixed time interval that the physics engine is updated at, which can be

configured by the user of the ML-Agents package. An episode is the duration of one lap

through the training course, and can also be terminated after a preset number of steps has

passed. An episode may also be terminated prematurely before reaching the step limit if

the agent accomplishes an end condition such as successfully reaching the end target or

by toppling over and failing.

4.2.4 Quadruped Crawler Agent

 The crawler is a non-humanoid quadruped capable of rotating each leg at two points

of articulation with two axes of rotation on its upper leg and one axis of rotation on its

foreleg, as seen in the following figures.

 15

Fig. 4. Image of crawler in its default pose.

Fig. 5. Agent and its range of motion on upper leg (left image) and foreleg (right image).

 16

Fig. 6. Leg angle limits in degrees are shown for upper leg (left image) and foreleg (right
image), with Low Angular Limit representing the minimum angle a limb is capable of
rotation, and High Angular Limit representing the maximum angle. The angles are shown
in degrees relative to the legs’ default position.

Other observations given to the agent were designed with the idea of giving it some

spatial awareness and knowledge of its limbs’ orientations. We attempted to improve the

crawler's balance capabilities by giving it sensors at the ends of its feet that return the

surface normal, simulated in Fig. 7, of the point of contact that each foot makes,

 17

somewhat simulating the effect of having feet that pivot at its ankles when pressed along

a surface. In addition to having a sense of touch with the use of surface normals, we gave

the agent awareness of its local up vector so that it can have a sense of orientation in the

world, somewhat simulating the balancing effects of an inner ear. We also calculated the

agent’s center of mass as an observation in an attempt to improve the agent’s balance.

The surface normal of each foot contact, along with the agent’s current local up vector

and center of mass are all passed to the brain as observations. To determine how high a

foot was off the ground, we made each of the agent’s feet calculate the distance from its

center to the ground. The agent’s altitude relative to the origin, and the agent’s leg

rotation and position values were also passed as observations. In order to give the agent

awareness of the target point that it should be moving towards, we calculated the

direction to the target and passed that vector as an observation.

 18

Fig. 7. Example of a surface normal (blue arrow) of a curved terrain [26].

 The agent’s reward function was based on rewarding the agent whenever it performed

an action that would lead to progressing towards the target. After the agent performed an

action, it gained reward whenever it faced the target, moved closer to the target, or

touched the target, and lost a small amount of reward as time progressed. Meanwhile,

whenever the agent gained reward, the adversary gained the same amount of reward as

the agent, but multiplied by -1.

4.2.5 Adversary Agent

 Pinto et al. [15] and Pinto et al. [9] have shown that implementing an adversary is a

viable method for training a robust locomotive agent, so we decided to also use an

 19

adversary for our locomotive experiment. Pinto et al.'s [9] RARL approach consisted of

training the locomotive learning agent alongside an adversary agent that learned to apply

optimal forces/disturbances to destabilize the locomotive agent as it was learning.

 The adversary is an agent that learns how to optimally interfere with the crawler's

learning process in an attempt to improve the robustness of the crawler's learned

behavior. With an adversarial approach to RL, the adversary learns to exploit the agent's

weaknesses as the agent learns to overcome challenges of its task along with the

additional challenges created by the adversary. It is an arms race that ultimately leads to

an optimized and robust agent and adversary, where the trained agent can skillfully react

to nearly any challenge it faces thanks to the hardships it faced while learning with

interference from the adversary, while a well-trained adversary is cunning enough to be

able to thwart the learning attempts of a less clever agent. The adversary in our setup

does not physically exist, and instead interacts with the crawler agent by directly applying

forces to, and by modifying the mass and friction values of one of the crawler's limbs or

body. Fig. 8 illustrates a physical representation of the adversary.

 20

Fig. 8. Crawler agent with adversarial force applied to its body, represented by the
colored arrow.

We chose to make the adversary a non-physical agent due to Pinto et al.’s [9] results

using a similar approach. We gave the adversary preset values that limit the amount of

force it is able to apply to the agent, based on trial and error, that prevent the adversary

from instantly sending the agent flying off the terrain. Unlike with Pinto et al.'s [9]

training method, we trained our agent and adversary concurrently, so they both actively

learned how to outsmart each other as the training trial progressed.

 Because the adversary is itself an agent, its learning procedure is similar to that of the

learning agent. Each step, it takes in the same observations of the learning agent that it is

 21

attached to, and then decides on an action based on its past experience with other

observations. The adversary may then choose to apply an adversarial action to one of the

learning agent’s limbs or body during its decision step, with actions such as modifying

the selected limb’s mass or friction, and applying a force to it in a direction of the

adversary’s choosing. As with a normal agent, the adversary performs the same chosen

action every step until it selects a new action during its decision step. For our project, we

set the adversary to make a new decision every 150 steps, which we found was enough

steps for the adversary to have an impact on the agent without being too overwhelmingly

powerful.

4.2.6 Terrain

 We used transfer learning to train the agent on a simple terrain, and then gradually

increased the difficulty of the training environment. In order to make use of transfer

learning, we started off by training the crawler agent on a flat plane, and then gradually

increased the slope of the terrain when the agent became proficient at flat plane

locomotion. We procedurally generated slopes within a set range at the beginning of the

training session and do not change the slopes for the entire session. Each agent being

trained has its own unique set of slopes to traverse to reduce the chance of overfitting.

Fig. 9 shows an example of a procedurally generated terrain seen from the side.

 22

Fig. 9. Sample of a randomly-generated terrain with crawler's starting position located at
the axis arrows.

4.3 Training Conditions

4.3.1 Flat Solo

We started off by training an agent alone on a simple flat terrain without an

adversary, with the goal of creating an agent that can proficiently traverse its training

environment. Having an agent that can proficiently traverse flat terrain gave us a starting

point to make use of transfer learning to gradually teach the agent to traverse increasingly

complex terrain.

 23

Fig. 10. Agent on flat terrain.

4.3.2 Flat Adversarial

 For our adversarial approach, we initially trained our learning agent on a flat plane,

similarly to the Flat Solo trial except with an adversary attached to the agent. The idea

was to train the agent to be proficient at traversing the flat plane while constantly having

external forces and changes in friction and mass applied to it by the adversary. Results of

the research by Pinto et al. [9] suggest that a similar adversarial approach will result in a

robust locomotive agent. The Flat Adversarial brain is separate from the Flat Solo brain,

and is similarly used with transfer learning to teach the agent to traverse increasingly

complex terrain while simultaneously being attacked by the adversary.

 24

Fig. 11. Agent on flat terrain with adversarial force enabled.

4.3.3 Flat Adversary

 Since the adversary is itself a learning agent, it also has a brain. As with the Flat Solo

and Flat Adversarial locomotive agent brains, the Adversary brain is used with transfer

learning to teach the adversary how to deal with increasingly complex terrain. Because

the adversary is a parasitic agent, its brain corresponds with the brain of its host agent, so

the Flat Adversary brain is paired with the Flat Adversarial brain, while the Sloped

Adversary brain is paired up with the Sloped Adversarial brain.

4.3.4 Sloped Solo (Baseline)

 We made use of transfer learning to gradually ease the crawler agent to become

masterful at slope climbing by continuing to train the Flat Solo brain on terrain with

 25

gradually increasing slopes. The terrain was procedurally generated at the beginning of

the run and was split into segments of varying slopes, where the slopes are randomized

within a set range to allow the agent to experience new slope angles as well as the non-

sloped terrain that it has already mastered. We increased the range of slopes with each

successive run of a set of episodes, so the agent was allowed to become proficient at

traversing a fixed range of slopes for a set number of episodes before the slope range was

increased. The slope range was not designed to automatically increase after a set number

of episodes had passed, and instead needed to be set manually. As a result of this, the

training session needed to be stopped and restarted in order to increase the slope range, so

the agent was set to train with the same set of slopes for each entire training or testing

session. The Sloped Solo brain, which we will refer to as the baseline brain, would later

be used as our control to compare against our brains trained with an adversary and in

environments with varying slopes.

 26

Fig. 12. Agent on sloped terrain.

4.3.5 Sloped Adversarial

 As with the baseline brain, we made use of transfer learning and continued training

the Flat Adversarial brain on terrain of increasing sloped ranges with the intent of

increasing the robustness of our adversarial locomotive agent. The slope generation

method and episode counts for the Sloped Adversarial training session was the same as

the one used for the baseline trial, with the only difference being the presence of the

adversary that learns alongside the locomotive agent. As with the baseline trial, the slope

ranges were fixed for each set of episodes, where we only changed the slope range at the

beginning of each training session.

 27

Fig. 13. Agent on sloped terrain with adversarial force enabled.

4.3.6 Sloped Adversary

 Analogous to the previously-mentioned Sloped brains, the Sloped Adversary brain

was an expansion of the Flat Adversary brain that learned to interrupt a Sloped

Adversarial agent that was learning to traverse an increasingly complex sloped terrain.

4.4 Training Results

 The results of the training for the baseline, adversarial, and adversary brains can be

viewed in Fig. 14, where the average cumulative reward is plotted for each successive

episode. Because we trained multiple agents concurrently, the average cumulative reward

represents the average of the total reward accumulated by all trained agents for that

episode. A higher cumulative reward means that the agent was more successful during its

run, since it was making more "correct" actions that increased its reward.

 28

Fig. 14. Graphs show cumulative reward over multiple episodes for training baseline
(left) and adversarial (right) brains. Initial arc indicates the portion of the training where
the brains were trained on a flat plain. The following parts of the graphs indicate when
training was moved onto gradually-increasing sloped terrain. For the adversarial brains,
the blue curve shows the reward for the agent brain, while the red curve shows the reward
for the adversary brain.

4.5 Test Scenarios

 To test the robustness of our trained agents, we paused the learning of each agent's

brain and let the agents traverse the testing environment using their knowledge gained

during the training phase. The training environment consisted of gradually-increasing,

procedurally generated slopes, similar to the training environment, but with much steeper

slopes. In order to add more variety and unexpected situations to the training environment

and simulate real-world situations where the robot implementing the agent's brain does

not match the crawler's physical parameters exactly, the trials were performed for each

slope setting with different parameters such as with trained adversary enabled, adjusted

agent body mass, friction, and with projectiles randomly fired at the agent.

 29

Fig. 15. Testing session with a projectile randomly fired at the agent.

Each trial consisted of a specific combination of parameters and was split into the

following: Flat, Adversary Flat, Sloped, Adversary Sloped, Sloped with Projectile,

Sloped with Different Mass, Sloped with Different Friction, Sloped with Different Mass

and Projectiles, and Sloped with Different Friction and Projectiles. The exact parameters

for the tests can be found in the following results section along with their corresponding

results. The effectiveness of a brain during its test is rated by the total amount of reward

that the agent is able to accumulate throughout its run with a particular parameter setting.

4.5.1 Flat

 We first tested the baseline and Sloped Adversarial brains on a simple flat terrain to

confirm that they are comparable with each other. For the entirety of our tests, we tested

these two brains only, with the Sloped Adversarial brain as our main brain to test and the

 30

baseline brain as our baseline control. We set the crawler agent to have a default body

mass of 1 unit and with a leg/foot friction value of 0.6 units. The agents were run for

2000 episodes before the testing trial was terminated. Twelve agent/adversary pairs were

trained concurrently to speed up the training procedure. The resulting data shows that the

two brains are comparable with each other.

Table 1
Test on Flat Terrain

Brain Average Cumulative Reward

Baseline 3080.375

Sloped Adversarial 3089.161

4.5.2 Adversary Flat

 Our next test was to have the baseline and Sloped Adversarial crawlers traverse the

same flat terrain but with the fully-trained adversary enabled to add external disturbances

to the locomotive agents. Since this test uses the trained adversary brain that is intended

to actively target the crawler's weak points, we expected a drastic drop in total reward at

the end of the test.

Table 2
Test on Flat Terrain with Adversary Enabled

Brain Average Cumulative Reward

Baseline 1584.717

Sloped Adversarial 2191.16

 31

 As expected, there was a notable drop in total reward, especially for the baseline brain

that had never learned to deal with adversarial disturbances. While the Sloped

Adversarial agent performed 29% worse than with the default Flat test, it still performed

27.7% better than the baseline agent when traversing terrain with an adversarial

disturbance.

4.5.3 Sloped

 For our sloped terrain test, we used the same procedurally generated sloped terrain

method as in our training sessions, with four separate trials for each slope range.

Fig. 16. The graph shows how the adversarial brain was more robust to changes in slope
angle steepness.

 As the slope ranges increased, the difference between the baseline agent and Sloped

Adversarial agent's total reward also increased, suggesting that the Sloped Adversarial

agent was more effective at dealing with newly-encountered terrain.

 32

4.5.4 Adversary Sloped

 As with the Adversary Flat test, we ran the Sloped test again but with the adversary

enabled. This test case was intended to test how our agents would respond to unfamiliar

terrain as well as unexpected disturbances.

Fig. 17. The graph shows how the adversarial brain was more robust to changes in slope
angle steepness while the trained adversary actively applied forces to the agent.

 Upon completion of the test, both agents continued to yield lower scores as the terrain

complexity increased, with the Adversarial agent obtaining twice the reward of the Solo

agent when the slope range was 0-15 degrees.

4.5.5 Sloped with Projectiles

 After testing the agents against terrain with an intelligent disturbance agent, we tried

testing the agents against an unintelligent agent to see how well-equipped they were to

deal with complete randomness. For this test, we randomly threw projectiles of random

 33

mass with random force at the agents as they traversed the procedurally-generated sloped

terrain.

Fig. 18. The graph shows how the adversarial brain was more robust to changes in slope
angle steepness while projectiles were randomly thrown at the agent.

 While the Sloped Adversarial agent managed to perform better than the baseline

agent, it suffered a noticeable drop in performance when compared to its reward score

during the Adversary Sloped test. Meanwhile, the baseline’s reward score was close to its

score during the Adversary Sloped test.

4.5.6 Sloped with Varied Mass

 Since the purpose of a virtual locomotive agent is to eventually be able to apply its

learned behavior to a physical robot of varying parameters, we tested the brains in

crawlers of varying parameters, starting with different mass values.

 34

Fig. 19. The above graphs show how the adversarial brain was generally more robust to
changes in mass. The slopes in the graph titles refer to the max slope in degrees, with
minimum slope 0 degrees.

 35

Fig. 20. The graph for Random Slopes refers to the default test case with mass set to 1
unit. The graphs depict the same data as the previous set of graphs (Fig. 19), but with
mass shown as constant and with slope angle increasing. The adversarial brain generally
performed better when mass was high.

 The results generally showed that the agent trained alongside an adversary to be more

effective at traversing terrain than the baseline, although there was a lag in performance

as mass increased. The downwards slope in reward as max angle increased indicates that

 36

both the adversarial and baseline were susceptible to changes in terrain angle, although

the adversarial agent continued to perform better than the baseline.

4.5.7 Sloped with Projectiles and Varied Mass

 For our final two tests, we repeated the previous mass and friction tests with

projectiles enabled to simulate the case where varying robots encounter unintelligent

external phenomena.

 37

Fig. 21. The graph for Random Slopes with Projectile(top-left) refers to the test with
mass set to 1 unit. The graphs show how the adversarial brain was more robust to
changes in slope angle steepness while projectiles were randomly thrown at the agent,
and with different body masses set for the agent.

 As expected from the previous projectile test, the total rewards for this test were

continued in a downwards trend as max slope angle increased, but the adversarial brain

continued to show better results than the baseline. The results suggest that the adversarial

 38

brain is better at adapting to agents of different mass than what it was trained with,

compared to the baseline brain.

4.5.8 Sloped with Varied Friction

 Since the material of a physical robot may not always be consistent, we performed

multiple tests with the agent’s foot friction adjusted for each test in order to simulate real-

world variances in materials.

Fig. 22. The graph for Random Slopes(top-right) refers to the default test case with
friction set to 0.6. The graphs show how the adversarial brain was more robust to changes
in slope angle steepness when traversing terrain of varying friction values.

 The adversarial brain continues to show better results, despite the slight lag in

performance during the initial change in friction. The differences in results are smaller

than in previous tests, but are still noticeable.

 39

4.5.9 Sloped with Projectiles and Varied Friction

 Continuing our simulated real-world test, we tested the agent with different foot

friction while having projectiles thrown at it.

Fig. 23. The Random Slopes with Projectile graph refers to the default test case with
friction set to 0.6. The graphs show how the adversarial brain was more robust to changes
in slope angle steepness when traversing terrain of varying friction values and while
being bombarded with random projectiles.

 As with the previous test, the Adversarial Agent was more effective at maintaining

balance while under attack by random projectiles and with adjusted foot friction values.

The difference in performance between the adversarial brain and the baseline is similar to

the previous test, but the addition of random projectiles to the test brought both

cumulative rewards down even further.

 40

5 CONCLUSION

 In our tests, an adversarial approach to training a locomotive agent was found to be

more effective than training an agent alone. Our adversarial agent was found to be more

robust than our baseline agent, being able to better adapt to unexpected situations such as

varying terrain slopes, friction, and body mass, as well as to being under attack by

external forces such as a trained adversary and random projectiles.

 With our current training setup, the training terrains were generated at the start of the

training session and did not change at any time during training, which made it possible

for agents to overfit to the currently-generated terrain slopes. An improvement would be

to make the terrain regenerate when the agent concludes an episode of training so that its

next lap would involve completely new terrain that the agent had never encountered yet,

although with the same range of slope angles that can be randomly generated.

 Our testing conditions only accounted for mass and friction, as far as the agent's

physical properties were concerned, and we did not test agents with different proportions

and weight distribution. Future tests could involve changing the agent's leg lengths to

account for cases where a physical robot may not match the proportions of the crawler

agent. Such tests would give us a better understanding of how robust the adversarial

approach can accommodate for the physical properties of the agent itself rather than just

variances in its environment.

 41

References

[1] O. Tutsoy and M. Brown, "Convergence analysis of reinforcement learning
approaches to humanoid locomotion," in UKACC International Conference on
Control 2010, Coventry, 2010, pp. 1-6.

[2] Y. Mao et al., "A Reinforcement Learning Based Dynamic Walking Control," in
Proceedings 2007 IEEE International Conference on Robotics and Automation,
Roma, 2007, pp. 3609-3614.

[3] C. Fu and K. Chen, "Gait Synthesis and Sensory Control of Stair Climbing for a
Humanoid Robot," IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp.
2111-2120, May 2008.

[4] "Robot," 12 Mar. 2020. [Online]. Available: https://en.wikipedia.org/wiki/Robot.

[5] O. SeungSub, H. Jehun, J. Hyunjung, L. Soyeon and S. Jinho, "A study on the
disaster response scenarios using robot technology," in 2017 14th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, 2017, pp.
520-523.

[6] A. Unluturk and O. Aydogdu, "Design and implementation of a mobile robot used
in bomb research and setup disposal," in Proceedings of the International
Conference on ELECTRONICS, COMPUTERS and ARTIFICIAL INTELLIGENCE
- ECAI-2013, Pitesti, 2013, pp. 1-5.

[7] A. K. B. Motaleb, M. B. Hoque and M. A. Hoque, "Bomb disposal robot," in 2016
International Conference on Innovations in Science, Engineering and Technology
(ICISET), Dhaka, 2016, pp. 1-5.

[8] S. Sakakibara, "The latest robot systems which reinforce manufacturing sector," in
2003 IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), Taipei, Taiwan, 2003, pp. 2878-2883 vol.2.

[9] L. Pinto, J. Davidson, R. Sukthankar and A. Gupta, "Robust Adversarial
Reinforcement Learning," arXiv:1703.02702, Mar. 2017.

[10] Yu She, C. J. Hurd and H. Su, "A transformable wheel robot with a passive leg," in
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Hamburg, 2015, pp. 4165-4170.

 42

[11] Y. Mae, A. Yoshida, T. Arai, K. Inoue, K. Miyawaki and H. Adachi, "Application
of locomotive robot to rescue tasks," in Proceedings. 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113),
Takamatsu, Japan, 2000, pp. 2083-2088 vol.3.

[12] "BigDog," 24 Mar 2020. [Online]. Available: https://en.wikipedia.org/wiki/BigDog.

[13] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z.
Wang, S. M. A. Eslami, M. Riedmiller and D. Silver, "Emergence of Locomotion
Behaviours in Rich Environments," arXiv:1707.02286, Jul. 2017.

[14] G. Karimpanal, T. Roland and B. Roland, "Self-Organizing Maps for Storage and
Transfer of Knowledge in Reinforcement Learning," arXiv:1811.08318 [cs.AI],
Nov. 2018.

[15] L. Pinto, J. Davidson and A. Gupta, "Supervision via Competition: Robot
Adversaries for Learning Tasks," arXiv:1610.01685, Oct. 2016.

[16] U. Garg, "Virtual Robot Climbing using Reinforcement Learning," Dec. 2018.
[Online]. Available: https://scholarworks.sjsu.edu/etd_projects/658. [Accessed
Sept. 2019].

[17] J. Schulman, S. Levine, P. Abbeel, M. Jordan and P. Moritz, "Trust region policy
optimization," in International Conference on Machine Learning, 2015, pp. 1889-
1897.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D.
Wierstra, "Continuous control with deep reinforcement learning,"
arXiv:1509.02971v1, Sept. 2015.

[19] "Legged Robot," 25 Feb. 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Legged_robot.

[20] G. A. Bekey, Autonomous robots: from biological inspiration to implementation
and control, Cambridge, Massachusetts: MIT Press, 2005.

[21] "Inverted Pendulum," 3 Mar. 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Inverted_pendulum.

[22] Akash, S. Chandra, Abha and G. C. Nandi, "Modeling a bipedal humanoid robot
using inverted pendulum towards push recovery," in 2012 International Conference

 43

on Communication, Information & Computing Technology (ICCICT), Mumbai,
2012, pp. 1-6.

[23] Y. Sun, X. Yuan, W. Liu and C. Sun, "Model-Based Reinforcement Learning via
Proximal Policy Optimization," in 2019 Chinese Automation Congress (CAC),
Hangzhou, China, 2019, pp. 4736-4740.

[24] "ML-Agents Toolkit Overview," 18 Mar. 2020. [Online]. Available:
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/ML-Agents-
Overview.md.

[25] "Academy.cs," 11 Mar. 2020. [Online]. Available: https://github.com/Unity-
Technologies/ml-agents/blob/master/com.unity.ml-agents/Runtime/Academy.cs.

[26] "Normal (geometry)," 1 Feb. 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Normal_(geometry).

 44

Appendix A: Source Code

CrawlerAcademy2.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using MLAgents;
using UnityEditor;

/// <summary>
/// Academy for Crawler and Adversary agents.
/// Has the option to configure agent’s body mass and feet friction,
/// and run with projectiles randomly thrown at the agent.
/// author: Phong Nguyen
/// with minor code segments from Unity ML-Agents
/// </summary>
public class CrawlerAcademy2 : CrawlerAcademy, Testable
{
 // Test values
 float testReward = 0;
 float testCRreward = 0; //cumulative reward
 public int testEpisodeLimit = -1; //print results and terminate when limit reached
 int testEpisodeCount = 0;
 public bool isTesting = false; //set to true if you want to print reward data
 public bool throwProjectiles = false;
 public float bodyMass = 1f;
 public float forelegFriction = 0.6f;
 public float forelegBounciness = 0f;
 public List<Rigidbody> bodies;
 string stringBody = "Body";
 public List<Collider> forelegs;
 string stringForeleg = "foreleg";
 public int projectileThrowInterval = 15;
 int currentStepInterval = 0;
 ProjectileThrower projectileThrower;
 public GameObject baseProjectile;

 public class ProjectileThrower
 {
 public int projectileCount = 50;
 GameObject baseProjectile;
 Stack<GameObject> inactiveProjectiles;
 Dictionary<GameObject, Rigidbody> rigidbodyDictionary;
 GameObject currentProjectile;

 public void Init(GameObject proj)
 {
 inactiveProjectiles = new Stack<GameObject>();
 rigidbodyDictionary = new Dictionary<GameObject, Rigidbody>();
 baseProjectile = proj;

 45

 //fill projectile stack
 if (baseProjectile != null)
 {
 //spawn projectiles
 for (int i = 0; i < projectileCount; i++)
 {
 currentProjectile = Instantiate(baseProjectile);
 currentProjectile.SetActive(false);
 currentProjectile.GetComponent<ProjectileScript>().Init(this);
 rigidbodyDictionary.Add(currentProjectile,
currentProjectile.GetComponent<Rigidbody>());
 inactiveProjectiles.Push(currentProjectile);
 }
 }
 else
 {
 Debug.Log("No base projectile found Cannot throw projectiles");
 return;
 }
 }

 /// <summary>
 /// Select a projectile if any and throw at target
 /// </summary>
 public void ThrowProjectile(Rigidbody target) {
 if (inactiveProjectiles.Count > 0)
 {
 //select a random position around target
 currentProjectile = inactiveProjectiles.Pop();
 //get pos 5m away from target, rotate by random amt w/ target as pivot
 currentProjectile.transform.position = target.transform.position +
target.velocity*Time.deltaTime + new Vector3(0, Random.Range(1f, 2f),4f);
 currentProjectile.transform.RotateAround(target.transform.position + target.velocity *
Time.deltaTime + Vector3.up*.5f, Vector3.up, Random.Range(0,720f));
 currentProjectile.transform.LookAt(target.transform.position + target.velocity *
Time.deltaTime, Vector3.up);
 currentProjectile.SetActive(true);
 //apply a force to projectile towards target
 rigidbodyDictionary[currentProjectile].AddForce(currentProjectile.transform.forward *
3000f);
 }
 }

 /// <summary>
 /// Reset and disable projectile, and store it for future use
 /// </summary>
 public void CleanupProjectile(GameObject p)
 {
 rigidbodyDictionary[p].velocity = Vector3.zero;
 rigidbodyDictionary[p].angularVelocity = Vector3.zero;
 p.SetActive(false);
 inactiveProjectiles.Push(p);
 }

 46

 }

 /// <summary>
 /// Initialize academy and setup projectiles if testing with projectiles
 /// </summary>
 public override void InitializeAcademy()
 {
 base.InitializeAcademy();
 if (isTesting)
 {
 if (throwProjectiles)
 {
 projectileThrower = new ProjectileThrower();
 projectileThrower.Init(baseProjectile);
 }

 bodies = new List<Rigidbody>();
 //setup body mass
 foreach (Rigidbody rb in GameObject.FindObjectsOfType<Rigidbody>())
 {
 if (rb.CompareTag(stringBody))
 {
 bodies.Add(rb);
 rb.mass = bodyMass;
 }
 }
 forelegs = new List<Collider>();
 //setup feet friction
 foreach (Collider col in GameObject.FindObjectsOfType<Collider>())
 {
 if (col.CompareTag(stringForeleg))
 {
 forelegs.Add(col);
 col.material.staticFriction = forelegFriction;
 col.material.dynamicFriction = forelegFriction;
 col.material.bounciness = forelegBounciness;
 }
 }
 }
 }

 public override void AcademyReset()
 {
 testReward = 0;
 testCRreward = 0;
 testEpisodeCount = 0;
 }

 /// <summary>
 /// Throw projectile if current step is the throw projectile step
 /// </summary>
 public override void AcademyStep()
 {

 47

 currentStepInterval++;
 if (throwProjectiles && currentStepInterval == projectileThrowInterval)
 {
 currentStepInterval %= projectileThrowInterval;
 projectileThrower.ThrowProjectile(bodies[Random.Range(0, bodies.Count)]);
 }
 }

 public void CollectReward(float r)
 {
 if (isTesting)
 {
 testReward += r;
 }
 }

 public void CollectCumulativeReward(float c)
 {
 if (isTesting)
 {
 if (testEpisodeCount < testEpisodeLimit)
 {
 testCRreward += c;
 testEpisodeCount += 1;
 }

 if (testEpisodeLimit > 0 && testEpisodeCount >= testEpisodeLimit)
 {
 //limit reached, terminate
 ExitPlayMode();
 }
 }
 }

 /// <summary>
 /// Terminate the test session
 /// </summary>
 public void ExitPlayMode()
 {
 EditorApplication.isPlaying = false;
 }

 /// <summary>
 /// Print out reward data for review when test session is terminated
 /// </summary>
 void OnApplicationQuit()
 {
 if (isTesting)
 {
 //print data
 Debug.Log("episodes completed: " + testEpisodeCount);
 Debug.Log("threw projectiles: " + throwProjectiles);

 48

 Debug.Log("mass: " + bodyMass + ", friction: " + forelegFriction + ", bounce: " +
forelegBounciness);
 Debug.Log("total reward: " + testReward);
 Debug.Log("avg reward: " + testReward / ((float)testEpisodeCount));
 Debug.Log("total c reward: " + testCRreward);
 Debug.Log("avg c reward: " + testCRreward / ((float)testEpisodeCount));
 Debug.Log("Done testing, now terminating!");
 }
 }
}

CrawlerAdversaryAgent.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using MLAgents;

/// <summary>
/// Adversary agent that applies forces to its host agent
/// author: Phong Nguyen
/// with minor code segments from Unity ML-Agents
/// </summary>
public class CrawlerAdversaryAgent : Agent
{
 bool isNewDecisionStep;
 int currentDecisionStep;

 //host agent modifiers
 [SerializeField] CrawlerAgent hostAgent;
 JointDriveController hostJdController;
 [SerializeField] float maxAcceleration = 5f;
 float maxForce;
 Vector3 forceDirection;
 [SerializeField] float maxFriction;
 [SerializeField] float maxBounciness;
 [SerializeField] float maxMass;
 [SerializeField] float minMass;
 [SerializeField] bool visualizeForce = false;
 [SerializeField] Transform forceSprite; //sprite used for visualization

 //host limbs
 [System.Serializable] struct Limb
 {
 [SerializeField] public Transform tf;
 [SerializeField] public Rigidbody rb;
 [SerializeField] public Collider col;
 }
 [SerializeField] Limb[] hostLimbs;
 struct LimbValues

 49

 {
 public float mass;
 public float staticFriction;
 public float dynamicFriction;
 public float bounciness;
 }
 List<LimbValues> hostLimbDefaults;

 public override void InitializeAgent()
 {
 if (visualizeForce)
 {
 forceSprite.gameObject.SetActive(true);
 }
 else
 {
 forceSprite.gameObject.SetActive(false); //disable until needed
 }

 // Save limb default values
 hostLimbDefaults = new List<LimbValues>();
 for (int i=0; i < hostLimbs.Length; i++)
 {
 LimbValues newValues = new LimbValues();
 newValues.mass = hostLimbs[i].rb.mass;
 newValues.staticFriction = hostLimbs[i].col.material.staticFriction;
 newValues.dynamicFriction = hostLimbs[i].col.material.dynamicFriction;
 newValues.bounciness = hostLimbs[i].col.material.bounciness;
 hostLimbDefaults.Add(newValues);
 }

 // Calculate max force
 maxForce = maxMass * maxAcceleration; //F=ma
 }

 /// <summary>
 /// Collect observations from a specific body part
 /// Observations are from Unity ML-Agents project’s CrawlerAgent class
 /// </summary>
 public virtual void CollectObservationBodyPart(BodyPart bp)
 {
 var rb = bp.rb;
 AddVectorObs(bp.groundContact.touchingGround ? 1 : 0);
 AddVectorObs(rb.velocity);
 AddVectorObs(rb.angularVelocity);

 if (bp.rb.transform != hostAgent.body)
 {
 Vector3 localPosRelToBody = hostAgent.body.InverseTransformPoint(rb.position);
 AddVectorObs(localPosRelToBody);
 AddVectorObs(bp.currentXNormalizedRot); // Current x rot
 AddVectorObs(bp.currentYNormalizedRot); // Current y rot
 AddVectorObs(bp.currentZNormalizedRot); // Current z rot

 50

 AddVectorObs(bp.currentStrength / hostAgent.jdController.maxJointForceLimit);
 }

 //collision data
 AddVectorObs(bp.groundContact.lastContactPositionX);
 AddVectorObs(bp.groundContact.lastContactPositionY);
 AddVectorObs(bp.groundContact.lastContactPositionZ);
 AddVectorObs(bp.groundContact.lastContactNormalX);
 AddVectorObs(bp.groundContact.lastContactNormalY);
 AddVectorObs(bp.groundContact.lastContactNormalZ);

 //height data
 if (bp.groundContact.checkForHeight)
 {
 AddVectorObs(bp.groundContact.GetHeightFromGround());
 }
 }

 /// <summary>
 /// Collect observations from the host agent
 /// Observations are the same as in Unity ML-Agents project’s CrawlerAgent class
 /// </summary>
 public override void CollectObservations()
 {
 hostAgent.jdController.GetCurrentJointForces();
 // Normalize direction vector to help generalize
 AddVectorObs(hostAgent.dirToTarget.normalized);

 // Forward & up to help with orientation
 AddVectorObs(hostAgent.body.transform.position.y); //height
 AddVectorObs(hostAgent.body.forward);
 AddVectorObs(hostAgent.body.up);
 foreach (var bodyPart in hostAgent.jdController.bodyPartsDict.Values)
 {
 CollectObservationBodyPart(bodyPart);
 }

 // Center of mass to aid with balance
 hostAgent.CalculateCenterOfMass();
 AddVectorObs(hostAgent.centerOfMass.x);
 AddVectorObs(hostAgent.centerOfMass.y);
 AddVectorObs(hostAgent.centerOfMass.z);
 }

 /// <summary>
 /// Select one of the host agent’s limbs and apply forces to it
 /// </summary>
 public override void AgentAction(float[] vectorAction, string textAction)
 {
 // Perform actions only if this is a new decision step
 if (isNewDecisionStep)
 {
 ResetLimbs();

 51

 // Get ref to host agent’s body parts
 var bpDict = hostAgent.jdController.bodyPartsDict;

 int i = -1;
 // Select a limb to interrupt
 int j = Mathf.Clamp(j, 0, hostLimbs.Length - 1);
 hostLimbs[j].rb.mass = Mathf.Clamp(Mathf.Abs(vectorAction[++i]) * maxMass,
minMass, maxMass);
 // Apply force with resulting acceleration restricted to max value
 forceDirection.x = vectorAction[++i];
 forceDirection.y = vectorAction[++i];
 forceDirection.z = vectorAction[++i];
 forceDirection = Vector3.Normalize(forceDirection);
 hostLimbs[j].rb.AddForce(Mathf.Clamp(Mathf.Abs(vectorAction[++i])*maxForce /
hostLimbs[j].rb.mass,0,maxAcceleration*hostLimbs[j].rb.mass)*forceDirection,
ForceMode.Impulse);
 //F=ma, clamp F/m so that it is between 0 and maxAcceleration

 if (visualizeForce)
 {
 forceSprite.position = hostLimbs[j].col.transform.position;
 forceSprite.LookAt(hostLimbs[j].col.transform.position + forceDirection);
 }

 // Change friction and bounciness values
 hostLimbs[j].col.material.dynamicFriction = Mathf.Clamp(Mathf.Abs(vectorAction[++i]) *
maxFriction, 0, maxFriction);
 hostLimbs[j].col.material.staticFriction = Mathf.Clamp(Mathf.Abs(vectorAction[++i]) *
maxFriction, 0, maxFriction);
 hostLimbs[j].col.material.bounciness = Mathf.Clamp(Mathf.Abs(vectorAction[++i]) *
maxBounciness, 0, maxBounciness);

 }
 }

 void ResetLimbs()
 {
 // Reset limb values
 for (int i = 0; i < hostLimbs.Length; i++)
 {
 hostLimbs[i].rb.mass = hostLimbDefaults[i].mass;
 hostLimbs[i].col.material.staticFriction = hostLimbDefaults[i].staticFriction;
 hostLimbs[i].col.material.dynamicFriction = hostLimbDefaults[i].dynamicFriction;
 hostLimbs[i].col.material.bounciness = hostLimbDefaults[i].bounciness;
 }
 }

 public override void AgentReset()
 {
 ResetLimbs();
 isNewDecisionStep = true;
 currentDecisionStep = 1;
 }

 52

}

CrawlerAgent2.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using MLAgents;

/// <summary>
/// Crawler agent that can be attacked by an adversary
/// author: Phong Nguyen
/// with minor code segments from Unity ML-Agents
/// </summary>
public class CrawlerAgent2 : CrawlerAgent
{
 public Vector3 centerOfMass = Vector3.zero;
 protected float totalMass = 0f;

 //heights
 float bodyHeight;
 float foot0Height;
 float foot1Height;
 float foot2Height;
 float foot3Height;

 [SerializeField] public CrawlerAdversaryAgent adversary;

 //tester is an Academy that can run tests and print out reward data
 Testable tester;

 protected override void OnEnableHelper(Academy academy)
 {
 base.OnEnableHelper(academy);
 if (tester == null && academy is Testable)
 {
 tester = academy as Testable;
 }
 }

 public override void InitializeAgent()
 {
 base.InitializeAgent();

 //Calculate total mass
 totalMass = 0f;
 foreach (var bp in jdController.bodyPartsDict.Values)
 {
 totalMass += bp.rb.mass;
 }
 }

 53

 /// <summary>
 /// Calculate center of mass of the agent
 /// </summary>
 public void CalculateCenterOfMass()
 {
 centerOfMass = Vector3.zero;
 totalMass = 0f;
 foreach (var bp in jdController.bodyPartsDict.Values)
 {
 centerOfMass += bp.rb.worldCenterOfMass * bp.rb.mass;
 totalMass += bp.rb.mass;
 }
 centerOfMass /= totalMass;

 /**
 //visualize center of mass
 if (com != null)
 {
 com.position = centerOfMass;
 }
 */
 }

 /// <summary>
 /// Add relevant information on each body part to observations.
 /// </summary>
 public override void CollectObservationBodyPart(BodyPart bp)
 {
 base.CollectObservationBodyPart(bp);

 //collision data
 AddVectorObs(bp.groundContact.lastContactPositionX);
 AddVectorObs(bp.groundContact.lastContactPositionY);
 AddVectorObs(bp.groundContact.lastContactPositionZ);
 AddVectorObs(bp.groundContact.lastContactNormalX);
 AddVectorObs(bp.groundContact.lastContactNormalY);
 AddVectorObs(bp.groundContact.lastContactNormalZ);

 //height data
 if (bp.groundContact.checkForHeight)
 {
 AddVectorObs(bp.groundContact.GetHeightFromGround());
 }
 }

 public override void CollectObservations()
 {
 base.CollectObservations();

 // Center of mass
 CalculateCenterOfMass();
 AddVectorObs(centerOfMass.x);

 54

 AddVectorObs(centerOfMass.y);
 AddVectorObs(centerOfMass.z);
 }

 /// <summary>
 /// Overrides the current step reward of the agent and updates the episode
 /// reward accordingly.
 /// </summary>
 /// <param name="reward">The new value of the reward.</param>
 public override void SetReward(float reward)
 {
 base.SetReward(reward);
 if (adversary != null)
 {
 adversary.SetReward(-reward);
 }
 }

 /// <summary>
 /// Increments the step and episode rewards by the provided value.
 /// </summary>
 /// <param name="increment">Incremental reward value.</param>
 public override void AddReward(float increment)
 {
 base.AddReward(increment);
 if (adversary != null)
 {
 adversary.AddReward(-increment);
 }
 }

 /// <summary>
 /// Loop over body parts and reset them to initial conditions.
 /// </summary>
 public override void AgentReset()
 {
 base.AgentReset();

 tester.CollectReward(GetReward());
 tester.CollectCumulativeReward(GetCumulativeReward());
 }

 /// <summary>
 /// Sets the done flag to true for itself and adversary.
 /// </summary>
 public override void Done()
 {
 base.Done();
 if (adversary != null)
 {
 adversary.Done();
 }
 }

 55

}

GroundContact2.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

namespace MLAgents
{
 /// <summary>
 /// This class gives the agent information about whether or not this Ground Contact is
touching the ground.
 /// It also stores the last contact position, the normal of the last surface contacted, and the
transform’s height above the ground.
 /// author: Phong Nguyen
 /// with minor code segments from Unity ML-Agents
 /// </summary>
 [DisallowMultipleComponent]
 public class GroundContact2 : GroundContact
 {
 public float lastContactPositionX = 0f; //position of last contact, relative to this transform
 public float lastContactPositionY = 0f;
 public float lastContactPositionZ = 0f;
 public float lastContactNormalX = 0f; //surface normal of last collider that made contact
 public float lastContactNormalY = 0f;
 public float lastContactNormalZ = 0f;
 protected List<Collider> collidedColliders; //colliders that are currently in contact

 public bool checkForHeight = false;
 float spherecastRadius = .15f;
 [SerializeField] Transform spherecastOrigin;
 [SerializeField] LayerMask spherecastLayerMask;
 const float skinWidth = .05f; //distance added to spherecast radius to reduce clipping
 const float MAX_HEIGHT = 500f; //max height spherecast is capable of detecting

 void Start()
 {
 collidedColliders = new List<Collider>();
 Collider col = GetComponent<Collider>();
 if (col is SphereCollider)
 {
 spherecastRadius = ((SphereCollider)col).radius * transform.lossyScale.x -
skinWidth;// - skinWidth;
 }
 else if (col is CapsuleCollider)
 {
 spherecastRadius = ((CapsuleCollider)col).radius * transform.lossyScale.x -
skinWidth;// - skinWidth;
 }
 }

 56

 /// <summary>
 /// Check for collision with ground, and save the last contact position to pass as an
observation
 /// </summary>
 override void OnCollisionEnter(Collision other)
 {
 if (other.transform.CompareTag(Ground))
 {
 touchingGround = true;
 if (!collidedColliders.Contains(other.collider))
 {
 collidedColliders.Add(other.collider);
 }
 SetLastContactPosition(this.transform.InverseTransformPoint(other.GetContact(0).p
oint));
 SetLastContactNormal(other.GetContact(0).normal);
 }
 }

 /// <summary>
 /// Check for end of ground collision and reset flag appropriately.
 /// Also zeroes out last contact position and contact normal if appropriate.
 /// </summary>
 override void OnCollisionExit(Collision other)
 {
 if (other.transform.CompareTag(Ground))
 {
 if (collidedColliders.Contains(other.collider))
 {
 collidedColliders.Remove(other.collider);

 //reset contact point values if no colliders in contact
 if (collidedColliders.Count == 0)
 {
 touchingGround = false;
 SetLastContactPosition(Vector3.zero);
 SetLastContactNormal(Vector3.zero);
 }
 }
 }
 }

 /// <summary>
 /// Update current collision contact point values
 /// </summary>
 void OnCollisionStay(Collision other)
 {
 if (other.transform.CompareTag(Ground))
 {
 SetLastContactPosition(this.transform.InverseTransformPoint(other.GetContact(0).p
oint));
 SetLastContactNormal(other.GetContact(0).normal);

 57

 //visualize surface normal
 //Debug.DrawRay(other.GetContact(0).point, other.GetContact(0).normal * 1f,
Color.red);
 }
 }

 void SetLastContactPosition(Vector3 pos)
 {
 lastContactPositionX = pos.x;
 lastContactPositionY = pos.y;
 lastContactPositionZ = pos.z;
 }

 void SetLastContactNormal(Vector3 n)
 {
 lastContactNormalX = n.x;
 lastContactNormalY = n.y;
 lastContactNormalZ = n.z;
 }

 /// <summary>
 /// Get distance from ground for this ground contact
 /// </summary>
 /// <returns>
 /// Returns the height from the ground if detected, otherwise returns MAX_HEIGHT
 /// </returns>
 public float GetHeightFromGround()
 {
 if (touchingGround)
 {
 return 0f;
 }

 if (spherecastOrigin != null)
 {
 return GetHeightFromGround(spherecastOrigin.position);
 }
 else
 {
 return GetHeightFromGround(transform.position);
 }
 }
 protected float GetHeightFromGround(Vector3 origin)
 {

 RaycastHit hit;
 if (Physics.SphereCast(origin, spherecastRadius, Vector3.down, out hit,
MAX_HEIGHT, spherecastLayerMask))
 {
 return hit.distance;
 }
 else

 58

 {
 return MAX_HEIGHT;
 }
 }
 }
}

GroundGenerator.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// This script randomly generates terrain for the agent to traverse, alternating between flat and
sloped terrain
/// author: Phong Nguyen
/// </summary>
public class GroundGenerator : MonoBehaviour
{
 [SerializeField] Transform groundBase; //reference to prefab
 [SerializeField] Transform target; //reference to game object
 [SerializeField] float minAngle;
 [SerializeField] float maxAngle;
 [SerializeField] float minSegmentLength; //min length of a segment
 [SerializeField] float maxSegmentLength; //max length of a segment
 [SerializeField] float maxLength; //max length of entire ground along X axis

 bool currentlyGeneratingSlope = false;
 float currentLength = 0; //current x distance of total ground
 Vector3 currentPosition = Vector3.zero; //pos of current segment
 float currentAngle; //angle of current segment
 Transform newTransform;
 Vector3 currentScale = Vector3.one; //scale of current segment
 float len;
 float lenX;
 float lenY;

 // Start is called before the first frame update
 void Start()
 {
 if (groundBase == null || target == null)
 {
 //error, these need to be set
 Debug.Log("Error. groundBase or target are not set");
 return;
 }

 currentPosition = transform.position;
 currentPosition.x += -maxLength / 2f;
 // always start with flat for agent to land on

 59

 GenerateStartSegment();
 while (currentLength < maxLength)
 {
 GenerateNextSegment();
 }
 //place target at end
 currentPosition.y += 5f;
 target.position = currentPosition;
 }

 /// <summary>
 /// Generate the initial flat ground segment
 /// </summary>
 void GenerateStartSegment()
 {
 //choose slope angle
 currentAngle = 0;
 newTransform = Instantiate(groundBase, currentPosition, Quaternion.Euler(0, 0,
currentAngle));
 //adjust segment length
 len = 25f;
 lenX = len;
 lenY = 0;
 currentScale = newTransform.localScale;
 currentScale.x = len;
 newTransform.localScale = currentScale;
 currentPosition.x += lenX;
 currentPosition.y += lenY;
 currentLength += lenX;
 }

 /// <summary>
 /// Generate next sloped ground segment
 /// </summary>
 void GenerateNextSegment()
 {
 //choose slope angle
 currentAngle = Random.Range(minAngle, maxAngle);
 newTransform = Instantiate(groundBase, currentPosition, Quaternion.Euler(0, 0,
currentAngle));
 //adjust segment length
 len = Random.Range(minSegmentLength, maxSegmentLength);
 lenX = len * Mathf.Cos(Mathf.Deg2Rad*currentAngle);
 lenY = len * Mathf.Sin(Mathf.Deg2Rad * currentAngle);
 currentScale = newTransform.localScale;
 currentScale.x = len;
 newTransform.localScale = currentScale;
 currentPosition.x += lenX;
 currentPosition.y += lenY;
 currentLength += lenX;
 }
}

 60

ProjectileScript.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// This class represents a projectile that can be thrown.
/// A thrown projectile disables itself when its duration ends.
/// Attach this to a prefab with a Collider and Rigidbody.
/// author: Phong Nguyen
/// </summary>
public class ProjectileScript : MonoBehaviour
{
 float duration = 5f; //duration projectile stays active
 float timer = 0f;
 CrawlerAcademy.ProjectileThrower parent;

 void OnEnable()
 {
 //reset timer
 timer = duration;
 }

 public void Init(CrawlerAcademy.ProjectileThrower thrower)
 {
 parent = thrower;
 }

 void Update() {
 //decrement timer, cleanup when time is 0
 timer -= Time.deltaTime;
 if (timer <= 0f)
 {
 if (parent != null)
 {
 parent.CleanupProjectile(gameObject);
 }
 }
 }
}

Testable.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>

 61

/// Interface for classes that print test data
/// author: Phong Nguyen
/// </summary>
public interface Testable
{
 void CollectReward(float r);
 void CollectCumulativeReward(float c);
 void ExitPlayMode();
}

	VIRTUAL ROBOT LOCOMOTION ON VARIABLE TERRAIN WITH ADVERSARIAL REINFORCEMENT LEARNING
	Microsoft Word - thesis paper v7 formatted.docx

