5 research outputs found

    Reuleaux: Robot Base Placement by Reachability Analysis

    Full text link
    Before beginning any robot task, users must position the robot's base, a task that now depends entirely on user intuition. While slight perturbation is tolerable for robots with moveable bases, correcting the problem is imperative for fixed-base robots if some essential task sections are out of reach. For mobile manipulation robots, it is necessary to decide on a specific base position before beginning manipulation tasks. This paper presents Reuleaux, an open source library for robot reachability analyses and base placement. It reduces the amount of extra repositioning and removes the manual work of identifying potential base locations. Based on the reachability map, base placement locations of a whole robot or only the arm can be efficiently determined. This can be applied to both statically mounted robots, where position of the robot and work piece ensure the maximum amount of work performed, and to mobile robots, where the maximum amount of workable area can be reached. Solutions are not limited only to vertically constrained placement, since complicated robotics tasks require the base to be placed at unique poses based on task demand. All Reuleaux library methods were tested on different robots of different specifications and evaluated for tasks in simulation and real world environment. Evaluation results indicate that Reuleaux had significantly improved performance than prior existing methods in terms of time-efficiency and range of applicability.Comment: Submitted to International Conference of Robotic Computing 201

    Using a Model of the Reachable Workspace to Position Mobile Manipulators for 3-d Trajectories

    No full text
    Humanoid robots are envisioned in general household tasks. To be able to fulfill a given task the robot needs to be equipped with knowledge concerning the manipulation and interaction in the environment and with knowledge about its own capabilities. When performing actions, e.g. opening doors or imitating human reach to grasp movements special 3- d trajectories are followed with the robot’s end-effector. These trajectories can not be executed in every part of the robot’s arm workspace. Therefore a task planner has to determine if and how additional degrees of freedom such as the robot’s upper body or the robot’s base can be moved in order to execute the task-specific trajectory. An approach is presented that computes placements for a mobile manipulator online given a task-related 3-d trajectory. A discrete representation of the robot arm’s reachable workspace is used. Task-specific trajectories are interpreted as patterns and searched in the reachability model using multi-dimensional correlation. The relevance of the presented approach is demonstrated in simulated positioning tasks

    On-the-Fly Workspace Visualization for Redundant Manipulators

    Get PDF
    This thesis explores the possibilities of on-line workspace rendering for redundant robotic manipulators via parallelized computation on the graphics card. Several visualization schemes for different workspace types are devised, implemented and evaluated. Possible applications are visual support for the operation of manipulators, fast workspace analyses in time-critical scenarios and interactive workspace exploration for design and comparison of robots and tools
    corecore