1,054 research outputs found

    Computer Access Technologies for Controlling Assistive Robotic Manipulators: Potentials and Challenges

    Get PDF
    One of the most challenging barriers to a successful application of the assistive robots is how to enable users who have special needs to interact with the robot aids in an efficient and comfortable manner, since the conventional control method using a traditional joystick combined with buttons and/or knobs demands fine motor control and good dexterity resulting in cognitive and physical workload. Adopting computer access technology, which has provided an alternative means to allow people who have a wide range of special needs to independently access their computer, can be a practical solution to this issue. In this paper, we reviewed and discussed the potentials and challenges of computer access technologies as an alternative control method for controlling assistive robotic manipulators, focusing on most widely adopted interventions in the clinical settings, including alternative pointing, keyboard-only access, switch scanning interface and speech recognition

    Better Medicine

    Get PDF
    https://scholarlyworks.lvhn.org/better-medicine/1022/thumbnail.jp

    Robot assisted stapedotomy ex vivo with an active handheld instrument

    Get PDF
    Micron is a fully handheld active micromanipulator that helps to improve position accuracy and precision in microsurgery by cancelling hand tremor. This work describes adaptation, tuning, and testing of the Micron system for stapedotomy, a microsurgical procedure performed in the middle ear to restore hearing that requires accurate manipulation in narrow spaces. Two end-effectors, a handle, and a brace (or rest) were designed and prototyped. The control system was adapted for the new hardware. The system was tested ex vivo in stapedotomy procedure comparing manually-performed and Micron-assisted surgical tasks. Tremor amplitude was found to be reduced significantly. Further testing is needed in order to obtain statistically significant results regarding other parameters dealing with regularity of the fenestra shap

    Development of a Wearable Mechatronic Elbow Brace for Postoperative Motion Rehabilitation

    Get PDF
    This thesis describes the development of a wearable mechatronic brace for upper limb rehabilitation that can be used at any stage of motion training after surgical reconstruction of brachial plexus nerves. The results of the mechanical design and the work completed towards finding the best torque transmission system are presented herein. As part of this mechatronic system, a customized control system was designed, tested and modified. The control strategy was improved by replacing a PID controller with a cascade controller. Although the experiments have shown that the proposed device can be successfully used for muscle training, further assessment of the device, with the help of data from the patients with brachial plexus injury (BPI), is required to improve the control strategy. Unique features of this device include the combination of adjustability and modularity, as well as the passive adjustment required to compensate for the carrying angle

    It is all me: the effect of viewpoint on visual-vestibular recalibration

    Get PDF
    Participants performed a visual–vestibular motor recalibration task in virtual reality. The task consisted of keeping the extended arm and hand stable in space during a whole-body rotation induced by a robotic wheelchair. Performance was first quantified in a pre-test in which no visual feedback was available during the rotation. During the subsequent adaptation phase, optical flow resulting from body rotation was provided. This visual feedback was manipulated to create the illusion of a smaller rotational movement than actually occurred, hereby altering the visual–vestibular mapping. The effects of the adaptation phase on hand stabilization performance were measured during a post-test that was identical to the pre-test. Three different groups of subjects were exposed to different perspectives on the visual scene, i.e., first-person, top view, or mirror view. Sensorimotor adaptation occurred for all three viewpoint conditions, performance in the post-test session showing a marked under-compensation relative to the pre-test performance. In other words, all viewpoints gave rise to a remapping between vestibular input and the motor output required to stabilize the arm. Furthermore, the first-person and mirror view adaptation induced a significant decrease in variability of the stabilization performance. Such variability reduction was not observed for the top view adaptation. These results suggest that even if all three viewpoints can evoke substantial adaptation aftereffects, the more naturalistic first-person view and the richer mirror view should be preferred when reducing motor variability constitutes an important issue

    Fourth year report: Institute of Making 2016-17

    Get PDF
    • …
    corecore