184 research outputs found

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Embedding Words and Senses Together via Joint Knowledge-Enhanced Training

    Get PDF
    Word embeddings are widely used in Nat-ural Language Processing, mainly due totheir success in capturing semantic infor-mation from massive corpora. However,their creation process does not allow thedifferent meanings of a word to be auto-matically separated, as it conflates theminto a single vector. We address this issueby proposing a new model which learnsword and sense embeddings jointly. Ourmodel exploits large corpora and knowl-edge from semantic networks in order toproduce a unified vector space of wordand sense embeddings. We evaluate themain features of our approach both qual-itatively and quantitatively in a variety oftasks, highlighting the advantages of theproposed method in comparison to state-of-the-art word- and sense-based models

    Natural language understanding: instructions for (Present and Future) use

    Get PDF
    In this paper I look at Natural Language Understanding, an area of Natural Language Processing aimed at making sense of text, through the lens of a visionary future: what do we expect a machine should be able to understand? and what are the key dimensions that require the attention of researchers to make this dream come true

    Handling Homographs in Neural Machine Translation

    Full text link
    Homographs, words with different meanings but the same surface form, have long caused difficulty for machine translation systems, as it is difficult to select the correct translation based on the context. However, with the advent of neural machine translation (NMT) systems, which can theoretically take into account global sentential context, one may hypothesize that this problem has been alleviated. In this paper, we first provide empirical evidence that existing NMT systems in fact still have significant problems in properly translating ambiguous words. We then proceed to describe methods, inspired by the word sense disambiguation literature, that model the context of the input word with context-aware word embeddings that help to differentiate the word sense be- fore feeding it into the encoder. Experiments on three language pairs demonstrate that such models improve the performance of NMT systems both in terms of BLEU score and in the accuracy of translating homographs.Comment: NAACL201

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.WortreprĂ€sentationen, sogenannte Word Embeddings, sind generische ReprĂ€sentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nĂ€chsten Nachbarn. Viele Probleme der Computerlinguistik können durch WortreprĂ€sentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den WortreprĂ€sentationen enthalten sind. In der ersten Publikation untersuchen wir ĂŒberwachte, graphenbasierte Methodenn um WortreprĂ€sentationen zu erzeugen. Diese Methoden fĂŒhren zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, fĂŒr welches zwei Ă€quivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne KnotenĂ€hnlichkeiten effektiv berechnen, da graphenbasierte WortreprĂ€sentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende WortreprĂ€sentationen und kombinieren diese mit semantischen Ressourcen, indem wir ReprĂ€sentationen fĂŒr Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und EntitĂ€ten. Die FlexibilitĂ€t unserer Methode zeichnet sich dadurch aus, dass wir beliebige WortreprĂ€sentationen als Eingabe verwenden können und keinen zusĂ€tzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der WortreprĂ€sentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten ReprĂ€sentationen zur Erstellung von WörterbĂŒchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und HĂ€ufigkeit. Die letzte Publikation prĂ€sentiert eine neue Rechenmethode fĂŒr die interpretierbaren ultra-kompakten UntervektorrĂ€ume -- Stimmung, Konkretheit, HĂ€ufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort fĂŒr Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”
    • 

    corecore