854 research outputs found

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Tea: A High-level Language and Runtime System for Automating Statistical Analysis

    Full text link
    Though statistical analyses are centered on research questions and hypotheses, current statistical analysis tools are not. Users must first translate their hypotheses into specific statistical tests and then perform API calls with functions and parameters. To do so accurately requires that users have statistical expertise. To lower this barrier to valid, replicable statistical analysis, we introduce Tea, a high-level declarative language and runtime system. In Tea, users express their study design, any parametric assumptions, and their hypotheses. Tea compiles these high-level specifications into a constraint satisfaction problem that determines the set of valid statistical tests, and then executes them to test the hypothesis. We evaluate Tea using a suite of statistical analyses drawn from popular tutorials. We show that Tea generally matches the choices of experts while automatically switching to non-parametric tests when parametric assumptions are not met. We simulate the effect of mistakes made by non-expert users and show that Tea automatically avoids both false negatives and false positives that could be produced by the application of incorrect statistical tests.Comment: 11 page

    Adaptation of machine translation for multilingual information retrieval in the medical domain

    Get PDF
    Objective. We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve eectiveness of cross-lingual IR. Methods and Data. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech–English, German–English, and French–English. MT quality is evaluated on data sets created within the Khresmoi project and IR eectiveness is tested on the CLEF eHealth 2013 data sets. Results. The search query translation results achieved in our experiments are outstanding – our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech–English, from 23.03 to 40.82 for German–English, and from 32.67 to 40.82 for French–English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French–English. For Czech–English and German–English, the increased MT quality does not lead to better IR results. Conclusions. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the IR performance – better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual techniques and state-of-the-art features and provide future research directions

    Adapting SMT Query Translation Reranker to New Languages in Cross-Lingual Information Retrieval

    Get PDF
    We investigate adaptation of a supervised machine learning model for reranking of query translations to new languages in the context of cross-lingual information retrieval. The model is trained to rerank multiple translations produced by a statistical machine translation system and optimize retrieval quality. The model features do not depend on the source language and thus allow the model to be trained on query translations coming from multiple languages. In this paper, we explore how this affects the final retrieval quality. The experiments are conducted on medical-domain test collection in English and multilingual queries (in Czech, German, French) from the CLEF eHealth Lab series 2013--2015. We adapt our method to allow reranking of query translations for four new languages (Spanish, Hungarian, Polish, Swedish). The baseline approach, where a single model is trained for each source language on query translations from that language, is compared with a model co-trained on translations from the three original languages
    corecore