3 research outputs found

    How to evaluate multiple range-sum queries progressively

    Get PDF
    Decision support system users typically submit batches of range-sum queries simultaneously rather than issuing individual, unrelated queries. We propose a wavelet based technique that exploits I/O sharing across a query batch to evaluate the set of queries progressively and efficiently. The challenge is that now controlling the structure of errors across query results becomes more critical than minimizing error per individual query. Consequently, we define a class of structural error penalty functions and show how they are controlled by our technique. Experiments demonstrate that our technique is efficient as an exact algorithm, and the progressive estimates are accurate, even after less than one I/O per query

    Evaluating holistic aggregators efficiently for very large datasets

    Get PDF
    In data warehousing applications, numerous OLAP queries involve the processing of holistic aggregators such as computing the “top n,” median, quantiles, etc. In this paper, we present a novel approach called dynamic bucketing to efficiently evaluate these aggregators. We partition data into equiwidth buckets and further partition dense buckets into sub-buckets as needed by allocating and reclaiming memory space. The bucketing process dynamically adapts to the input order and distribution of input datasets. The histograms of the buckets and subbuckets are stored in our new data structure called structure trees. A recent selection algorithm based on regular sampling is generalized and its analysis extended. We have also compared our new algorithms with this generalized algorithm and several other recent algorithms. Experimental results show that our new algorithms significantly outperform prior ones not only in the runtime but also in accuracy
    corecore