3,161 research outputs found

    Using Verification Technology to Specify and Detect Malware

    Get PDF
    Computer viruses and worms are major threats for our computer infrastructure, and thus, for economy and society at large. Recent work has demonstrated that a model checking based approach to malware detection can capture the semantics of security exploits more accurately than traditional approaches, and consequently achieve higher detection rates. In this approach, malicious behavior is formalized using the expressive specification language CTPL based on classic CTL. This paper gives an overview of our toolchain for malware detection and presents our new system for computer assisted generation of malicious code specifications

    Proactive Detection of Computer Worms Using Model Checking

    Get PDF
    Although recent estimates are speaking of 200,000 different viruses, worms, and Trojan horses, the majority of them are variants of previously existing malware. As these variants mostly differ in their binary representation rather than their functionality, they can be recognized by analyzing the program behavior, even though they are not covered by the signature databases of current antivirus tools. Proactive malware detectors mitigate this risk by detection procedures that use a single signature to detect whole classes of functionally related malware without signature updates. It is evident that the quality of proactive detection procedures depends on their ability to analyze the semantics of the binary. In this paper, we propose the use of model checkinga well-established software verification techniquefor proactive malware detection. We describe a tool that extracts an annotated control flow graph from the binary and automatically verifies it against a formal malware specification. To this end, we introduce the new specification language CTPL, which balances the high expressive power needed for malware signatures with efficient model checking algorithms. Our experiments demonstrate that our technique indeed is able to recognize variants of existing malware with a low risk of false positives. © 2006 IEEE
    • …
    corecore