-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Royal Holloway - Pure

Using Verification Technology to Specify and Detect
Malware

Andreas Holzer, Johannes Kinder, and Helmut Veith

Technische Universitat Miinchen
Fakultat fur Informatik
85748 Garching, Germany
{hol zer a, ki nder, vei th}@n. tum de

Abstract. Computer viruses and worms are major threats for our comjnite

frastructure, and thus, for economy and society at largeeRevork has demon-
strated that a model checking based approach to malwaretidetean capture
the semantics of security exploits more accurately thaditioamal approaches,
and consequently achieve higher detection rates. In tipigaph, malicious be-
havior is formalized using the expressive specificatioglage CTPL based on
classic CTL. This paper gives an overview of our toolchaimfalware detection

and presents our new system for computer assisted gemeodtisalicious code

specifications.

1 Introduction

In the last twenty-five years, model checking has evolved at industrial-strength
framework for the verification of hardware and software ditianally, the model check-
ing tool chain assumes that the specifications describertivgat properties of the sys-
tem to be analyzed in a positive way, i.e., specificationstiles the intended behavior
of the system. Our recent approach to malware detectiomy&}is this picture, in that
we use specifications to describe malicious behavior. Wel@ngn extension of the
temporal logic CTL to specify malicious behavior, and egtia@finite state model from
the disassembled executable. If the model checker findshattspecification holds
true, then the malware detector reports that the analyzéelisanfected. The advantage
of our approach over classical malware detection toolsigbility to cover families of
malware which use the same attack principle. Our tool is &hiketect also previously
unknown variants of malware which exhibit behavior simitathat of known malware,
but are syntactically different. Classical malware detecmainly rely on variations
of pattern matching using malware signatures from a virdaldese [2, 3]. Thus, they
require an update of the virus databases to detect new neabmaants.

Malware specifications differ from “standard” software sifieations in crucial as-
pects. Most importantly, a software specification is uguatitten in the context of the
program to be analyzed, i.e., the specification is creatélutive assistance of the pro-
grammer. Variable names, labels, and constant values tme gifecific to a program;
using them in a specification thus requires an understaruditige program. In the typ-
ical malware detection scenario, however, we have onlg ldt no knowledge about

https://core.ac.uk/display/28904029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the program. We usually do not have access to the source codall to the compiled
binary or byte code of the software. When the program is iddealicious, it is very
unlikely for the programmer to have created the softwarenimm@alysis-friendly way.
This scenario creates numerous difficulties specific to mahanalysis. First, we need
to prepare the program to be analyzed in a suitable mannkitBatwe can extract an
abstract model from it. Since the program is in binary foris tlequires disassembly
and, for some files, a decryption mechanism similar to thabdoin commercial anti-
virus tools. Second, the malicious code specification hasetapplicable to general
programs, that is, it must not contain hard coded variahteasaOnce the first problem
has been successfully addressed, i.e., once a candidatesitking has been disassem-
bled, one has to choose a strategy for extracting the abstael. This choice heavily
influences the nature of specifications that later can béiegidgainst the model. The
disassembled binary by itself contains only very low lexezhantic information about
the program. Basically, there are two possible strategiesreating a model from the
disassembled program and reasoning about its semantics.

— The first option is to perform extensive preanalysis andyddrextract exact se-
mantics from the assembly code. Specifications for such aefrtbdn could be
relatively short functional descriptions of malicious befor. The huge drawback
of this method is, however, that the preanalysis requiresteand complete se-
mantics for assembly code. The low level nature of x86 asgembkes an exact
functional description infeasible with current technaglog

— The second option, which we pursued in our approach, is tdeimgnt a coarse
abstraction that uses the control flow graph of the programaedel and ignores
machine state other than the program counter. The resutiodgl then is a state
transition system with one assembly instruction per st&ftth this approach, spec-
ifications become more complex as they need to reflect a l@vet bf behavior;
the need to have abstract variable names and values in spéoifis is immanent.

Therefore we enriched CTL by variables and quantifiers andiioéd a new specifica-
tion logic CTPL [1]. The advantages of this extension can &l illustrated by the
example specification “there is a register that is first setetm and later pushed onto
the stack”, which is on the level of assembly code but abtstiamplementation details
irrelevant to the malicious behavior. If we try to formalittés specification in CTL,
this would result in a large disjunction of the following for

EF((mov eax, 0) A AF(push eax))V
EF((mov ebx, 0) A AF(push ebx)) Vv
EF((mov ecx, 0) A AF(push ecx)) Vv ...
CTPL, however, uses predicates rather than atomic proposito represent assembler

instructions, which allows to quantify over an instructioparameters. In CTPL, we
can express the same specification using quantifiers as

Jr EF(nov(r,0) A AF push(r)).

Despite the succinct representation CTPL offers, the dedigalicious code speci-
fications is a fairly tedious process which involves writgignilarly structured formulas

PEid + Plain IDAPro [assembler Mocca

Binary | —| .
Unpacker Binary Source
Symac
Specificatio

Fig. 1. Malicious Software Detection Process.

several times. Therefore, we augmented the specificatisigm@hase by implement-
ing Symac (Specification gnthesis formalicious code), a visual editing tool that aids
a user in extracting a specification from a representativievara sample. The editor
encapsulates many common patterns and provides suppdutéoe automated ex-
traction techniques. In this paper, we first give an ovenaéwur malware detection
architecture and then proceed to present our new tool farrdeion of malicious code
specifications in CTPL.

2 Malware Specification and Detection

Figure 1 depicts our complete tool chain for malicious coetection. Our CTPL model
checkerMocca expects plain text assembly source code as input to congreinter-
nal model representation, so there is some amount of pregsogy necessary when
a new executable is to be checked. The majority of malwapadked, i.e., encoded
using an executable packer, which at runtime decrypts thgram into memory. A
packed program is practically immune to static analysisreetls to be decrypted be-
fore proceeding with the analysis. Thus, as a first step, we tmdetermine whether
the program is packed and which packing mechanism has beehn liss possible to
detect packed files by measuring byte entropy or by lookimdgifi@wn patterns gener-
ated by common executable packers. For this step, we reseHiD [4], a widely used
tool for identifying packed files. A number of specializedoacking programs and li-
braries are freely available, so knowing which packer waslue protect the program,
the corresponding unpacking tool can be chosen to corrdetyypt the executable in
the second step. For unknown packers, we can use generigtemtbased unpacking
methods [5].

After unpacking, the resulting plain binary can be passeddisassembler. We use
Datarescue’s state-of-the-art disassembler IDAPro [6fis task, which generates the
assembly source code used as input to the Mocca model ch&b&eca creates an
abstract model of the executable by parsing the assembl\Dfileng parsing, it per-
forms some simple syntactical substitutions to disamhgtlee assembly code (such
as replacingcor eax, eax with nov eax, 0). We model assembly code syntacti-
cally as Kripke structures, as illustrated in Figure 2. Bpy@struction is represented
by a corresponding predicate, its parameters are treatemhatants. Each line of code
corresponds to a state in the Kripke structure that is utygdentified by a so called
location modeled by the special predicatiec. Transitions in the Kripke structure are
added according to the possible control flow of the coderdiatibns without succes-
sors (e.g. return statements in intraprocedural analgsespssigned with a self-loop.

floc(1), mov(ebz, eax)

mov ebx, eax

jz 11

mov ecx, ebx
I11: mov ebx, edx

floc(2),jz(11)

N

#loc(3), mov(ebz, edx)

floc(4), mov(ecz, ebzx)

(O

Fig. 2. Example of assembler code and its corresponding Kripketsire.

Jumps are connected to their target only, conditional jutoj®th possible successors.
All other instructions are given a fall-through edge to tiseiccessor in the code.

Finally, Mocca checks the model against a malicious codeifpation in CTPL.
Since the specification logic allows quantification, we rezbtb adapt the bottom-up
explicit model checking algorithm for CTL [7] to keep track possible variable as-
signments. The introduction of quantifiers causes the CTBHehchecking problem
to becomd?SPACE-complete [8]. Therefore, the model checker uses sevetiamhiza-
tions to reduce the number of procedures checked and to keepumber of tracked
variable assignments low. Finally, the model checker respehether the assembly file
satisfies the specification, i.e., whether it is maliciounatr

3 Computer Aided Specification Synthesis

Malware detection in general works by the principle of matgtsignatures against pro-
grams to be scanned. With classical anti-virus tools, gesery new malware requires
an update of the signature database. In our setting, CTHRlifiga¢ions take the place
of malicious code signatures and allow to match whole ctas$enalware. Due to the
broad scope of CTPL specifications, updates are only nagest&n a new malware
exhibits a novel type of malicious behavior.

Unknown Malwafe Behawora!
Malware Analysis Dependencies
T |

Specification Analysis Specification Specification
Deployment Results Analysis

Fig. 3. Tool-supported Specification Generation Process.

mov ebp, esp
add esp, OFFFFFFF8h

no stack changei: """"""""""""

no definition

no stack change*: """""""""""" ’

GetSystemDirectoryA parameter dependency
nostackchanQEE i
no stack chang

IstrcatA

Fig. 4. Code fragment ofmall.aw, annotated with behavioral dependencies.

To create new specifications, we follow the development ggscshown in Fig-
ure 3. The unpacked, disassembled code of new malwareialinibaded into Symac
and manually analyzed to locate routines that exhibit dtarstic malicious behavior.
Once a portion of malicious code is found, we proceed to ifletitose instructions
which are of particular relevance for program behavior.sehiastructions are typically
system or library calls and instructions used for passirig ftam one call to the other.
For example, consider the fragment of assembly code in Eigtaken from the Trojan
dropperSmall.aw. It contains two function calls that we identified as chagéstic for
the malware’s behavior. The arguments passed to the calisritten onto the stack by
two pairs of push instructions. The string buftexi st i ngFi | eName is shared by
both function calls. We usBmall.aw as working example to show how a specification
formula is synthesized from malicious assembly code.

The user interactively selects relevant nodes in the cbilne graph (selected in-
structions are enclosed by boxes in Figure 4) and speciffpsndiencies between them
(indicated by arrows). The behavior of the code fragmenukhbe captured by the
resulting specification in a general way, so it is importanehcode only those de-
pendencies between instructions that are relevant to thavime. The user can choose
between the following different types of dependencies stdbe the relevant relation-
ships between nodes:

— Parameter abstraction Parameter abstractions substitute instruction parasete
by variables, e.g., to allow the allocation of differentistgrs or memory variables.
In our example, the constah@5h is irrelevant for the description of the malicious
behavior and is therefore abstracted away by a variablécétet] by a dotted box).

— Temporal restriction: This restriction states that the first instruction has te ap
pear before the second instruction. In our example, tenhpestictions have been
added between any two instructions connected by an arrow.

— No-stack-change restriction This restriction states that the first instruction has to
appear before the second instruction, and that the staak ishanged by instruc-
tions that are executed in-between (in Figure 4, thesaatsirs ensure the correct
parameter setup for the function calls)

Yevent (Z) = EFSOZ

Piemp (i,7) = EF(pi A EX(EFp;))

Pstack (1, 7) = EF (pi A EX(E[(Vt.mpush(t) A —pop(t))Up;]))

Vaer (1, 7,v) = EF(p; A EX(E[(Vv'.=mov(v,v") A =lea(v,v"))Ugp;]))

wherev # v’
Dpusn (1, t) = loc(l) A push(t) Deau(l,t) = floc(l) A call(t)
o1 = Ppusn(l1, c1) w2 = Ppusn(l2, dir) w3 = Pean(ls, Cet Syst enDi r A)
Y4 = Qspush (l4=7 di?“) Y5 = Qspush (l57 Cg) w6 = @mu(l67| strcat A)

Ellly 127 137 l47 l57 lG: C1, C2, di’r-wstack(ly 2) A Jlstuck (27 3) A Wstack (47 5) A Jlstuck (57 6) A
Dremp (3, 4) A Waer (2, 4, dir)

Fig. 5. Formula patterns and instantiations corresponding to tradenent in Figure 4.

— No-definition restriction: This restriction states that the first instruction has to
appear before the second instruction, and that there isaaneder of the second
instruction that is abstracted by a variable whose valuet€hanged in-between.

— Parameter dependencyParameter dependency ensures that the mapping of a vari-
able in two instances of parameter abstraction is actulaélysame. For example,
the parameteExi st i ngFi | eNane has to be abstracted by the same variable in
both push instructions. The additional no-definition rieitn further guarantees
thatExi st i ngFi | eName contains the same value.

Symac prohibits cyclic dependencies, allowing a straaiathrd automatic generation
of CTPL formulas using standard graph traversal algorithBvery element in a fi-
nite computation path is represented by a fornfida(l) A asmInstr(pary, ..., par,),
where the variablé references the location of the element in the Kripke stmggtine
predicateasmInstr denotes an instruction, and the parameters, . . ., par,, are ei-
ther constants or variables. Building upon these basicuotibn formulas, Symac gen-
erates different types of specification formulas obeyirggdbfined dependencies. Fig-
ure 5 shows the patter#s,qc. Yder, Yiemp, aNdWeyern,. The simplest patterdicye,,; (7)
just states that some instruction, representegd;bwill eventually occur. We handle the
restriction to a temporal order between two instructiomfolasy; andy; by instantiat-
ing the patter@,.,,, (¢, 7). ¥siacr Prohibits stack alteration between given instructions.
Waer (i, §,v) prohibits the redefinition of variablebetween two given instructions.

After instantiation of these patterns, the generated ftasare connected by a con-
junction. More complex patterns can be achieved by synéhirapindividual formulas
through the sharing of location variables in multiple lécatpredicates. Every unbound
variable is existentially quantified, leading to closediafas. Finally, the formulas for
all single paths are connected by a disjunction. The lowdrgddigure 5 shows the in-
struction formulas for our example and the resulting fomthht contains instantiations
of the according behavioral patterns.

The final specifications for the Mocca model checker contagxtual and formal
description of the corresponding malicious behavior, lystherated by Symac. In order

to optimize the model checking process, specifications sEncmntainclues—system
calls whose presence in a procedure is implied by the spatificformula—that enable
Mocca to skip irrelevant procedures from exhaustive amal\®ymac automatically
derives these clues from a given CTPL formula [9].

4 Related Work

Commercial anti-virus products still mainly rely on clasidetection techniques, such
as static string matching. Recently, however, more and wiane scanners have begun
using sandboxing and monitoring for detecting suspicictsalior. Szor [2] gives an
excellent overview on malware detection and analysis tecks used in the industry
today. The Digital Immune System (DIS), introduced by Whtal. [10] is a system
automating the process of malware analysis and signatmesggon to some extent. It
executes infected binaries in a supervised environmenijtors alteration of the sys-
tem state and attempts to create a signature from the olosgate; if the analysis fails,
the system alerts a human specialist. Christodorescu anflllhdescribe a template
based approach to semantic malware detection, partigédanlising on malware obfus-
cated by a set of common assembly level obfuscations. laviellp work, they prove
completeness of their malware detector with respect teetbbfuscations [12].

Dwyer et al. [13] identified common patterns of temporal #iieations that can be
translated into different temporal logics. Wagner et al] [describe a method that auto-
matically derives a model of application behavior in ordedétect atypical, suspicious
behavior.

5 Conclusion and Future Work

In this paper we presented our malware detection tool civailuding our recent mech-
anism for specification generation. We implemented thetycaptool Symac, that inte-
grates the process of specification development and erfaitles automated malware
analysis and specification extraction. As a next step, wiinvistigate to what extent
the identification of relevant code and dependencies camutoerated. Moreover, we
plan to employ automatic analysis techniques such as pattatching or API extrac-
tion [14—16]. Further automation of the signature genergprrocess will allow a faster
reaction to novel malicious code.

References

1. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, Betecting malicious code by model
checking. In: Proceedings of the GI SIG SIDAR Conference eteftion of Intrusions and
Malware & Vulnerability Assessment (DIMVA05). Volume 3B4f Springer Lecture Notes
in Computer Science. (2005) 174-187

. Szor, P.: The Art of Computer Virus Research and DefengmaBtec Press (2005)

3. Christodorescu, M., Jha, S.: Testing malware detectiorg\vrunin, G.S., Rothermel, G.,

eds.: Proceedings of the ACM/SIGSOFT International Syriymo®n Software Testing and
Analysis, ISSTA 2004, ACM (2004) 34-44

N

10.

11.

12.

13.

14.

15.

16.

. Jibz, Qwerton, snaker, xineohP: PEibtt p:// pei d. has.it/ (Last accessed: May

14, 2007)

. Christodorescu, M., Kinder, J., Jha, S., KatzenbeiSsekeith, H.: Malware normalization.

Technical Report 1539, University of Wisconsin, Madisoris@énsin, USA (2005)

. DataRescue sa/nv: IDA Prdit t p: / / www. dat ar escue. conl i dabase/ (Last ac-

cessed: May 14, 2007)

. Clarke, E., Emerson, E.: Design and synthesis of synéatian skeletons using branching

time temporal logic. In: Logics of Programs. Volume 131 ofctiege Notes in Computer
Science., Springer (1981) 52-71

. Kinder, J.: Model checking malicious code. Master's iheFechnische Universitat

Miinchen (2005)

. Holzer, A.: Description languages for malicious softevakaster’s thesis, Technische Uni-

versitat Miinchen (2006)

White, S., Swimmer, M., Pring, E., Arnold, W., Chess, Bigrar, J.: Anatomy of a
commercial-grade immune system. IBM Research White P419&9)

Christodorescu, M., Jha, S., Seshia, S., Song, D., Brffin Semantics-aware malware
detection. In: 2005 IEEE Symposium on Security and Priv&&R 2005), IEEE Computer
Society (2005) 32—-46

Dalla Preda, M., Christodorescu, M., Jha, S., Debray,ASsemantics-based approach to
malware detection. In Hofmann, M., Felleisen, M., eds.:cRealings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming gaages, POPL 2007,
ACM (2007) 377-388

Dwyer, M., Avrunin, G., Corbett, J.: Patterns in propepecifications for finite-state ver-
ification. In: Proceedings of the 1999 International Coefee on Software Engineering
(ICSE’99), ACM (1999) 411-420

Wagner, D., Dean, D.: Intrusion detection via statidysis. In: 2001 IEEE Symposium on
Security and Privacy (S&P 2001), IEEE Computer Society (20%6-169

Liu, C., Ye, E., Richardson, D.J.: Software library wsggttern extraction using a soft-
ware model checker. In: 21st IEEE/ACM International Coefere on Automated Software
Engineering (ASE 2006), IEEE Computer Society (2006) 304-3

Ammons, G., Bodik, R., Larus, J.: Mining specificatiohs. Symposium on Principles of
Programming Languages, ACM (2002) 4-16

