
Using Verification Technology to Specify and Detect
Malware

Andreas Holzer, Johannes Kinder, and Helmut Veith

Technische Universität München
Fakultät für Informatik

85748 Garching, Germany
{holzera,kinder,veith}@in.tum.de

Abstract. Computer viruses and worms are major threats for our computer in-
frastructure, and thus, for economy and society at large. Recent work has demon-
strated that a model checking based approach to malware detection can capture
the semantics of security exploits more accurately than traditional approaches,
and consequently achieve higher detection rates. In this approach, malicious be-
havior is formalized using the expressive specification language CTPL based on
classic CTL. This paper gives an overview of our toolchain for malware detection
and presents our new system for computer assisted generation of malicious code
specifications.

1 Introduction

In the last twenty-five years, model checking has evolved into an industrial-strength
framework for the verification of hardware and software. Traditionally, the model check-
ing tool chain assumes that the specifications describe the crucial properties of the sys-
tem to be analyzed in a positive way, i.e., specifications describe the intended behavior
of the system. Our recent approach to malware detection [1] inverts this picture, in that
we use specifications to describe malicious behavior. We employ an extension of the
temporal logic CTL to specify malicious behavior, and extract a finite state model from
the disassembled executable. If the model checker finds out that a specification holds
true, then the malware detector reports that the analyzed code is infected. The advantage
of our approach over classical malware detection tools is our ability to cover families of
malware which use the same attack principle. Our tool is ableto detect also previously
unknown variants of malware which exhibit behavior similarto that of known malware,
but are syntactically different. Classical malware detectors mainly rely on variations
of pattern matching using malware signatures from a virus database [2, 3]. Thus, they
require an update of the virus databases to detect new malware variants.

Malware specifications differ from “standard” software specifications in crucial as-
pects. Most importantly, a software specification is usually written in the context of the
program to be analyzed, i.e., the specification is created with the assistance of the pro-
grammer. Variable names, labels, and constant values are often specific to a program;
using them in a specification thus requires an understandingof the program. In the typ-
ical malware detection scenario, however, we have only little or no knowledge about

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28904029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the program. We usually do not have access to the source code but only to the compiled
binary or byte code of the software. When the program is indeed malicious, it is very
unlikely for the programmer to have created the software in an analysis-friendly way.
This scenario creates numerous difficulties specific to malware analysis. First, we need
to prepare the program to be analyzed in a suitable manner such that we can extract an
abstract model from it. Since the program is in binary form this requires disassembly
and, for some files, a decryption mechanism similar to that found in commercial anti-
virus tools. Second, the malicious code specification has tobe applicable to general
programs, that is, it must not contain hard coded variable names. Once the first problem
has been successfully addressed, i.e., once a candidate forchecking has been disassem-
bled, one has to choose a strategy for extracting the abstract model. This choice heavily
influences the nature of specifications that later can be verified against the model. The
disassembled binary by itself contains only very low level semantic information about
the program. Basically, there are two possible strategies for creating a model from the
disassembled program and reasoning about its semantics.

– The first option is to perform extensive preanalysis and to try to extract exact se-
mantics from the assembly code. Specifications for such a model then could be
relatively short functional descriptions of malicious behavior. The huge drawback
of this method is, however, that the preanalysis requires exact and complete se-
mantics for assembly code. The low level nature of x86 assembly makes an exact
functional description infeasible with current technology.

– The second option, which we pursued in our approach, is to implement a coarse
abstraction that uses the control flow graph of the program asmodel and ignores
machine state other than the program counter. The resultingmodel then is a state
transition system with one assembly instruction per state.With this approach, spec-
ifications become more complex as they need to reflect a lower level of behavior;
the need to have abstract variable names and values in specifications is immanent.

Therefore we enriched CTL by variables and quantifiers and obtained a new specifica-
tion logic CTPL [1]. The advantages of this extension can be easily illustrated by the
example specification “there is a register that is first set tozero and later pushed onto
the stack”, which is on the level of assembly code but abstracts implementation details
irrelevant to the malicious behavior. If we try to formalizethis specification in CTL,
this would result in a large disjunction of the following form:

EF((mov eax,0) ∧ AF(push eax)) ∨

EF((mov ebx,0) ∧ AF(push ebx)) ∨

EF((mov ecx,0) ∧ AF(push ecx)) ∨ . . .

CTPL, however, uses predicates rather than atomic propositions to represent assembler
instructions, which allows to quantify over an instruction’s parameters. In CTPL, we
can express the same specification using quantifiers as

∃r EF(mov(r,0) ∧ AF push(r)).

Despite the succinct representation CTPL offers, the design of malicious code speci-
fications is a fairly tedious process which involves writingsimilarly structured formulas

2



Binary
Plain

Binary
Assembler

Source
Result

Specification

PEid +

Unpacker

IDAPro Mocca

Symac

Fig. 1. Malicious Software Detection Process.

several times. Therefore, we augmented the specification design phase by implement-
ing Symac (Specification synthesis formalicious code), a visual editing tool that aids
a user in extracting a specification from a representative malware sample. The editor
encapsulates many common patterns and provides support forfuture automated ex-
traction techniques. In this paper, we first give an overviewof our malware detection
architecture and then proceed to present our new tool for thecreation of malicious code
specifications in CTPL.

2 Malware Specification and Detection

Figure 1 depicts our complete tool chain for malicious code detection. Our CTPL model
checkerMocca expects plain text assembly source code as input to construct the inter-
nal model representation, so there is some amount of preprocessing necessary when
a new executable is to be checked. The majority of malware ispacked, i.e., encoded
using an executable packer, which at runtime decrypts the program into memory. A
packed program is practically immune to static analysis andneeds to be decrypted be-
fore proceeding with the analysis. Thus, as a first step, we have to determine whether
the program is packed and which packing mechanism has been used. It is possible to
detect packed files by measuring byte entropy or by looking for known patterns gener-
ated by common executable packers. For this step, we resort to PEiD [4], a widely used
tool for identifying packed files. A number of specialized unpacking programs and li-
braries are freely available, so knowing which packer was used to protect the program,
the corresponding unpacking tool can be chosen to correctlydecrypt the executable in
the second step. For unknown packers, we can use generic, emulation-based unpacking
methods [5].

After unpacking, the resulting plain binary can be passed toa disassembler. We use
Datarescue’s state-of-the-art disassembler IDAPro [6] for this task, which generates the
assembly source code used as input to the Mocca model checker. Mocca creates an
abstract model of the executable by parsing the assembly file. During parsing, it per-
forms some simple syntactical substitutions to disambiguate the assembly code (such
as replacingxor eax,eax with mov eax,0). We model assembly code syntacti-
cally as Kripke structures, as illustrated in Figure 2. Every instruction is represented
by a corresponding predicate, its parameters are treated asconstants. Each line of code
corresponds to a state in the Kripke structure that is uniquely identified by a so called
location modeled by the special predicate♯loc. Transitions in the Kripke structure are
added according to the possible control flow of the code: Instructions without succes-
sors (e.g. return statements in intraprocedural analysis)are assigned with a self-loop.

3



1 mov ebx , eax
2 j z l 1
3 mov ecx , ebx
4 l 1 : mov ebx , edx

s1 ♯loc(1),mov(ebx , eax)

s2 ♯loc(2), jz(l1 )

s3 ♯loc(3),mov(ebx , edx)

s4 ♯loc(4),mov(ecx , ebx)

Fig. 2.Example of assembler code and its corresponding Kripke structure.

Jumps are connected to their target only, conditional jumpsto both possible successors.
All other instructions are given a fall-through edge to their successor in the code.

Finally, Mocca checks the model against a malicious code specification in CTPL.
Since the specification logic allows quantification, we needed to adapt the bottom-up
explicit model checking algorithm for CTL [7] to keep track of possible variable as-
signments. The introduction of quantifiers causes the CTPL model checking problem
to becomePSPACE-complete [8]. Therefore, the model checker uses several optimiza-
tions to reduce the number of procedures checked and to keep the number of tracked
variable assignments low. Finally, the model checker reports whether the assembly file
satisfies the specification, i.e., whether it is malicious ornot.

3 Computer Aided Specification Synthesis

Malware detection in general works by the principle of matching signatures against pro-
grams to be scanned. With classical anti-virus tools, nearly every new malware requires
an update of the signature database. In our setting, CTPL specifications take the place
of malicious code signatures and allow to match whole classes of malware. Due to the
broad scope of CTPL specifications, updates are only necessary when a new malware
exhibits a novel type of malicious behavior.

Unknown
Malware

Malware
Analysis

Behavioral
Dependencies

Symac

Specification
Deployment

Analysis
Results

Specification
Analysis

Specification

Fig. 3.Tool-supported Specification Generation Process.

4



mov ebp, esp

add esp, 0FFFFFFF8h

push 105h

push ExistingFileName

call GetSystemDirectoryA

push ExistingFileName

push FileName

call lstrcatA

no stack change

no stack change

no stack change

no stack change

parameter dependency
no definition

Fig. 4.Code fragment ofSmall.aw, annotated with behavioral dependencies.

To create new specifications, we follow the development process shown in Fig-
ure 3. The unpacked, disassembled code of new malware is initially loaded into Symac
and manually analyzed to locate routines that exhibit characteristic malicious behavior.
Once a portion of malicious code is found, we proceed to identify those instructions
which are of particular relevance for program behavior. These instructions are typically
system or library calls and instructions used for passing data from one call to the other.
For example, consider the fragment of assembly code in Figure 4 taken from the Trojan
dropperSmall.aw. It contains two function calls that we identified as characteristic for
the malware’s behavior. The arguments passed to the calls are written onto the stack by
two pairs of push instructions. The string bufferExistingFileName is shared by
both function calls. We useSmall.aw as working example to show how a specification
formula is synthesized from malicious assembly code.

The user interactively selects relevant nodes in the control flow graph (selected in-
structions are enclosed by boxes in Figure 4) and specifies dependencies between them
(indicated by arrows). The behavior of the code fragment should be captured by the
resulting specification in a general way, so it is important to encode only those de-
pendencies between instructions that are relevant to the behavior. The user can choose
between the following different types of dependencies to describe the relevant relation-
ships between nodes:

– Parameter abstraction: Parameter abstractions substitute instruction parameters
by variables, e.g., to allow the allocation of different registers or memory variables.
In our example, the constant105h is irrelevant for the description of the malicious
behavior and is therefore abstracted away by a variable (indicated by a dotted box).

– Temporal restriction: This restriction states that the first instruction has to ap-
pear before the second instruction. In our example, temporal restrictions have been
added between any two instructions connected by an arrow.

– No-stack-change restriction: This restriction states that the first instruction has to
appear before the second instruction, and that the stack is not changed by instruc-
tions that are executed in-between (in Figure 4, these restrictions ensure the correct
parameter setup for the function calls)

5



Ψevent (i) = EFϕi

Ψtemp(i, j) = EF(ϕi ∧ EX(EFϕj))
Ψstack (i, j) = EF(ϕi ∧ EX(E[(∀t.¬push(t) ∧ ¬pop(t))Uϕj]))
Ψdef (i, j, v) = EF(ϕi ∧ EX(E[(∀v′.¬mov(v, v′) ∧ ¬lea(v, v′))Uϕj ]))

wherev 6= v′

Φpush(l, t) = ♯loc(l) ∧ push(t) Φcall (l, t) = ♯loc(l) ∧ call(t)

ϕ1 = Φpush(l1, c1)
ϕ4 = Φpush(l4, dir)

ϕ2 = Φpush(l2, dir)
ϕ5 = Φpush(l5, c2 )

ϕ3 = Φcall (l3,GetSystemDirA)
ϕ6 = Φcall (l6,lstrcatA)

∃l1, l2, l3, l4, l5, l6, c1, c2, dir .Ψstack (1, 2) ∧ Ψstack (2, 3) ∧ Ψstack (4, 5) ∧ Ψstack (5, 6)∧
Ψtemp(3, 4) ∧ Ψdef (2, 4, dir)

Fig. 5.Formula patterns and instantiations corresponding to codefragment in Figure 4.

– No-definition restriction: This restriction states that the first instruction has to
appear before the second instruction, and that there is a parameter of the second
instruction that is abstracted by a variable whose value is not changed in-between.

– Parameter dependency: Parameter dependency ensures that the mapping of a vari-
able in two instances of parameter abstraction is actually the same. For example,
the parameterExistingFileName has to be abstracted by the same variable in
both push instructions. The additional no-definition restriction further guarantees
thatExistingFileName contains the same value.

Symac prohibits cyclic dependencies, allowing a straightforward automatic generation
of CTPL formulas using standard graph traversal algorithms. Every element in a fi-
nite computation path is represented by a formula♯loc(l)∧asmInstr(par

1
, . . . , parn),

where the variablel references the location of the element in the Kripke structure, the
predicateasmInstr denotes an instruction, and the parameterspar

1
, . . . , parn are ei-

ther constants or variables. Building upon these basic instruction formulas, Symac gen-
erates different types of specification formulas obeying the defined dependencies. Fig-
ure 5 shows the patternsΨstack , Ψdef , Ψtemp , andΨevent . The simplest patternΨevent(i)
just states that some instruction, represented byϕi, will eventually occur. We handle the
restriction to a temporal order between two instruction formulasϕi andϕj by instantiat-
ing the patternΨtemp(i, j). Ψstack prohibits stack alteration between given instructions.
Ψdef (i, j, v) prohibits the redefinition of variablev between two given instructions.

After instantiation of these patterns, the generated formulas are connected by a con-
junction. More complex patterns can be achieved by synchronizing individual formulas
through the sharing of location variables in multiple location predicates. Every unbound
variable is existentially quantified, leading to closed formulas. Finally, the formulas for
all single paths are connected by a disjunction. The lower part of Figure 5 shows the in-
struction formulas for our example and the resulting formula that contains instantiations
of the according behavioral patterns.

The final specifications for the Mocca model checker contain atextual and formal
description of the corresponding malicious behavior, bothgenerated by Symac. In order

6



to optimize the model checking process, specifications can also containclues—system
calls whose presence in a procedure is implied by the specification formula—that enable
Mocca to skip irrelevant procedures from exhaustive analysis. Symac automatically
derives these clues from a given CTPL formula [9].

4 Related Work

Commercial anti-virus products still mainly rely on classical detection techniques, such
as static string matching. Recently, however, more and morevirus scanners have begun
using sandboxing and monitoring for detecting suspicious behavior. Szor [2] gives an
excellent overview on malware detection and analysis techniques used in the industry
today. The Digital Immune System (DIS), introduced by Whiteet al. [10] is a system
automating the process of malware analysis and signature generation to some extent. It
executes infected binaries in a supervised environment, monitors alteration of the sys-
tem state and attempts to create a signature from the observed data; if the analysis fails,
the system alerts a human specialist. Christodorescu and Jha [11] describe a template
based approach to semantic malware detection, particularly focusing on malware obfus-
cated by a set of common assembly level obfuscations. In follow-up work, they prove
completeness of their malware detector with respect to these obfuscations [12].

Dwyer et al. [13] identified common patterns of temporal specifications that can be
translated into different temporal logics. Wagner et al. [14] describe a method that auto-
matically derives a model of application behavior in order to detect atypical, suspicious
behavior.

5 Conclusion and Future Work

In this paper we presented our malware detection tool chain,including our recent mech-
anism for specification generation. We implemented the graphical tool Symac, that inte-
grates the process of specification development and enablesfuture automated malware
analysis and specification extraction. As a next step, we will investigate to what extent
the identification of relevant code and dependencies can be automated. Moreover, we
plan to employ automatic analysis techniques such as pattern matching or API extrac-
tion [14–16]. Further automation of the signature generation process will allow a faster
reaction to novel malicious code.

References

1. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model
checking. In: Proceedings of the GI SIG SIDAR Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA’05). Volume 3548 of Springer Lecture Notes
in Computer Science. (2005) 174–187

2. Szor, P.: The Art of Computer Virus Research and Defense. Symantec Press (2005)
3. Christodorescu, M., Jha, S.: Testing malware detectors.In Avrunin, G.S., Rothermel, G.,

eds.: Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2004, ACM (2004) 34–44

7



4. Jibz, Qwerton, snaker, xineohP: PEiD.http://peid.has.it/ (Last accessed: May
14, 2007)

5. Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser,S., Veith, H.: Malware normalization.
Technical Report 1539, University of Wisconsin, Madison, Wisconsin, USA (2005)

6. DataRescue sa/nv: IDA Pro.http://www.datarescue.com/idabase/ (Last ac-
cessed: May 14, 2007)

7. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching
time temporal logic. In: Logics of Programs. Volume 131 of Lecture Notes in Computer
Science., Springer (1981) 52–71

8. Kinder, J.: Model checking malicious code. Master’s thesis, Technische Universität
München (2005)

9. Holzer, A.: Description languages for malicious software. Master’s thesis, Technische Uni-
versität München (2006)

10. White, S., Swimmer, M., Pring, E., Arnold, W., Chess, D.,Morar, J.: Anatomy of a
commercial-grade immune system. IBM Research White Paper (1999)

11. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-aware malware
detection. In: 2005 IEEE Symposium on Security and Privacy (S&P 2005), IEEE Computer
Society (2005) 32–46

12. Dalla Preda, M., Christodorescu, M., Jha, S., Debray, S.: A semantics-based approach to
malware detection. In Hofmann, M., Felleisen, M., eds.: Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007,
ACM (2007) 377–388

13. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-state ver-
ification. In: Proceedings of the 1999 International Conference on Software Engineering
(ICSE’99), ACM (1999) 411–420

14. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: 2001 IEEE Symposium on
Security and Privacy (S&P 2001), IEEE Computer Society (2001) 156–169

15. Liu, C., Ye, E., Richardson, D.J.: Software library usage pattern extraction using a soft-
ware model checker. In: 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2006), IEEE Computer Society (2006) 301–304

16. Ammons, G., Bodı́k, R., Larus, J.: Mining specifications. In: Symposium on Principles of
Programming Languages, ACM (2002) 4–16

8


