4 research outputs found

    Using strong shape priors for stereo

    Get PDF
    Abstract. This paper addresses the problem of obtaining an accurate 3D reconstruction from multiple views. Taking inspiration from the recent successes of using strong prior knowledge for image segmentation, we propose a framework for 3D reconstruction which uses such priors to overcome the ambiguity inherent in this problem. Our framework is based on an object-specific Markov Random Field (MRF)[10]. It uses a volumetric scene representation and integrates conventional reconstruction measures such as photo-consistency, surface smoothness and visual hull membership with a strong object-specific prior. Simple parametric models of objects will be used as strong priors in our framework. We will show how parameters of these models can be efficiently estimated by performing inference on the MRF using dynamic graph cuts [7]. This procedure not only gives an accurate object reconstruction, but also provides us with information regarding the pose or state of the object being reconstructed. We will show the results of our method in reconstructing deformable and articulated objects.

    Simultaneous segmentation and pose estimation of humans using dynamic graph cuts

    Get PDF
    This paper presents a novel algorithm for performing integrated segmentation and 3D pose estimation of a human body from multiple views. Unlike other state of the art methods which focus on either segmentation or pose estimation individually, our approach tackles these two tasks together. Our method works by optimizing a cost function based on a Conditional Random Field (CRF). This has the advantage that all information in the image (edges, background and foreground appearances), as well as the prior information on the shape and pose of the subject can be combined and used in a Bayesian framework. Optimizing such a cost function would have been computationally infeasible. However, our recent research in dynamic graph cuts allows this to be done much more efficiently than before. We demonstrate the efficacy of our approach on challenging motion sequences. Although we target the human pose inference problem in the paper, our method is completely generic and can be used to segment and infer the pose of any rigid, deformable or articulated object

    Simultaneous segmentation and pose estimation of humans using dynamic graph cuts

    Get PDF
    This paper presents a novel algorithm for performing inte- grated segmentation and 3D pose estimation of a human body from mul- tiple views. Unlike other state of the art methods which focus on either segmentation or pose estimation individually, our approach tackles these two tasks together. Our method works by optimizing a cost function based on a Conditional Random Field (CRF). This has the advantage that all information in the image (edges, background and foreground ap- pearances), as well as the prior information on the shape and pose of the subject can be combined and used in a Bayesian framework. Optimizing such a cost function would have been computationally infeasible. How- ever, our recent research in dynamic graph cuts allows this to be done much more efficiently than before. We demonstrate the efficacy of our ap- proach on challenging motion sequences. Although we target the human pose inference problem in the paper, our method is completely generic and can be used to segment and infer the pose of any rigid, deformable or articulated object
    corecore