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Abstract. This paper presents a novel algorithm for performing inte-
grated segmentation and 3D pose estimation of a human body from mul-
tiple views. Unlike other state of the art methods which focus on either
segmentation or pose estimation individually, our approach tackles these
two tasks together. Our method works by optimizing a cost function
based on a Conditional Random Field (CRF). This has the advantage
that all information in the image (edges, background and foreground ap-
pearances), as well as the prior information on the shape and pose of the
subject can be combined and used in a Bayesian framework. Optimizing
such a cost function would have been computationally infeasible. How-
ever, our recent research in dynamic graph cuts allows this to be done
much more efficiently than before. We demonstrate the efficacy of our ap-
proach on challenging motion sequences. Although we target the human
pose inference problem in the paper, our method is completely generic
and can be used to segment and infer the pose of any rigid, deformable
or articulated object.

1 Introduction

Human pose inference is an important problem in computer vision. It stands
at the crossroads of various important applications ranging from Human Com-
puter Interaction (HCI) to surveillance. The importance and complexity of this
problem can be guaged by the number of papers which have tried to deal with
it [1–13]. Most algorithms which perform pose estimation require the segmenta-
tion of humans as an essential introductory step [1–3]. This precondition limits
the use of these techniques to scenarios where good segmentations are made
available by enforcing strict studio conditions like blue-screening. Otherwise a
preprocessing step must be performed in an attempt to segment the human,
such as [14]. These approaches however cannot obtain good segmentations in
challenging scenarios which have: complex foreground and background, multi-
ple objects in the scene, and moving camera/background. Some pose inference
methods exist which do not need segmentations. These rely on features such as
chamfer distance [4], appearance [5], or edge and intensity [6]. However, none
of these methods is able to efficiently utilize all the information present in an



image, and fail if the feature detector they are using fails. This is partly because
the feature detector is not coupled to the knowledge of the pose and nature of
the object to be segmented.

The question is then, how to simultaneously obtain the segmentation and
human pose using all available information contained in the images?

Some elements of the answer to this question have been described by Ku-
mar et al. [15]. Addressing the object segmentation problem, they report that
“samples from the Gibbs distribution defined by the Markov Random
Field (MRF) very rarely give rise to realistic shapes”. As an illustration
of this statement, figure 1(b) shows the segmentation result corresponding to the
maximum a posteriori (MAP) solution of the Conditional Random Field (CRF)
incorporating information about the image edges and appearances of the object
and background. It can be clearly seen that this result is nowhere close to the
ground truth.

Shape priors and segmentation In recent years, a number of papers have
tried to couple MRFs or CRFs used for modelling the image segmentation
problem, with information about the nature and shape of the object to be seg-
mented [15, 17–19]. One of the earliest methods for combining MRFs with a
shape prior was proposed by Huang et al. [17]. They incrementally found the
MAP solution of an extended MRF1 integrated with a probabilistic deformable
model. They were able to obtain a refined estimate of the object contour by
using belief propagation in the area surrounding the contour of this deformable
model. This process was iterated till convergence.

The problem however was still far from being completely solved since objects
in the real world change their shapes constantly and hence it is difficult to
ascertain what would be a good choice for a prior on the shape. This complex
and important problem was addressed by the work of Kumar et al. [15]. They
modelled the segmentation problem by combining CRFs with layered pictorial
structures (LPS) which provided them with a realistic shape prior described
by a set of latent shape parameters. Their cost function was a weighted sum of
the energy terms for different shape parameters (samples). The weights of this
energy function were obtained by using the Expectation-Maximization (EM)
algorithm. During this optimization procedure, a graph cut had to be computed
in order to obtain the segmentation score each time any parameter of the CRF
was changed. This made their algorithm extremely computationally expensive.

Although their approach produced good results, it had some shortcomings. It
was focused on obtaining good segmentations and did not provide the pose of the
object explicitly. Moreover, a lot of effort had to be spent to learn the exemplars
for different parts of the LPS model. Recently, Zhao and Davis [19] exploited the
idea of object-specific segmentation in improving object recognition or detection.

1 It is named an extended MRF due to the presence of an extra layer in the MRF to
cope with the shape prior.



Fig. 1. Improving segmentation results by incorporating more information in the CRF.
(a) Original image. (b) The segmentation obtained corresponding to the MAP solution
of a CRF consisting of colour likelihood and contrast terms as described in [16]. We
give the exact formulation of this CRF in section 2.2. (c) The result obtained when
the likelihood term of the CRF also takes into account the Gaussian Mixture Models
(GMM) of individual pixel intensities as described in section 2.2. (d) Segmentation
obtained after incorporating a ‘pose-specific’ shape prior in the CRF as explained in
Section 2.3. The prior is represented as the distance transform of a stickman which
guarantees a human-like segmentation. (e) The stickman model after optimization of its
3D pose (see Section 3). Observe how incorporating the individual pixel colour models in
the CRF (c) gives a considerably better result than the one obtained using the standard
appearance and contrast based representation (b). However the segmentation still misses
the face of the subject. The incorporation of a stickman shape prior ensures a human-
like segmentation (d) and provides simultaneously (after optimization) the 3D pose of
the subject (e).

Their method worked by coupling the twin problems of object detection and
segmentation in a single framework. They matched exemplars to objects in the
image using chamfer matching and thus like [15] also suffered from the problem
of maintaining a huge exemplar set for complex objects.

Shape Priors in Level Sets Prior knowledge about the shape to be segmented
has also been used in level set methods for obtaining an object segmentation. Like
[15] these methods learn the prior using a number of training shapes. Leventon
et al. [20] performed principal component analysis on these shapes to get a
embedding function which was integrated in the evolution equation of the level



set. More recently, Cremers et al. [21] have used kernel density estimation and
intrinsic alignment to embed more complex shape distributions. Compared to
[15] and [19] these methods have a more compact representation of the shape
prior. However, they suffer from the disadvantage that equations for level set
evolution may not lead to the globally optimal solution.

In the next section we will describe how we overcome the problem of main-
taining a huge exemplar set by using a simple articulated stickman model, which
is not only efficiently renderable, but also provides a robust human-like segmenta-
tion and accurate pose estimate. To make our algorithm computationally efficient
we use the dynamic graph cut algorithm which was recently proposed in [22].
This new algorithm enables multiple graph cut computations, each computation
taking a fraction of the time taken by the conventional graph cut algorithm if
the change in the problem is small.

Solving Random Fields using Dynamic Graph cuts Inferring the most
probable solution of a MRF or CRF involves minimizing the energy function
which characterizes it. This energy is defined by some CRF parameters and the
data. A change in any of the two causes a change in the energy. If these changes
are minimal, then intuitively the change in the MAP solution of the CRF should
also be small. We made this observation and showed how dynamic graph cuts
can be used to efficiently find the MAP solutions for MRFs or CRFs that vary
minimally from one time instant to the next [22]. The underlying idea of our
paper was dynamic computation, where an algorithm solves a problem instance
by dynamically updating the solution of the previous problem instance. Its goal
is to be more efficient than a re-computation of the solution after every change
from scratch. In the case of large problem instances and few changes, dynamic
computation yields a substantial speed-up.

Human Pose Estimation In the last few years, several techniques have been
proposed for tackling the pose inference problem. In particular, the works of
Agarwal and Triggs [1] using relevance vector machines and that of Shakhnarovich
et al. [3] based on parametric sensitive hashing induced a lot of interest and have
been shown to give good results. Some methods for human pose estimation in
monocular images use a tree-structured model to capture the kinematic rela-
tions between parts such as the torso and limbs [11–13]. They then use efficient
inference algorithms to perform exact inference in such models. In their recent
work, Lan and Huttenlocher [9] show how the tree-structured restriction can be
overcome while not greatly increasing the computational cost of estimation.

Overview of the Paper The paper proposes a novel algorithm for performing
integrated segmentation and 3D pose estimation of a human body from multiple
views2. We do not require a feature extraction step but use all the data in

2 A shorter version of this paper earlier appeared as [23]. This extended version con-
tains a more thorough discussion of the behaviour of the optimization algorithm and
additional quantitative and qualitative results.



the image. We formulate the problem in a Bayesian framework building on the
object-specific CRF [15] and provide an efficient method for its solution called
PoseCut. We include a human pose-specific shape prior in the CRF used for
image segmentation, to obtain high quality segmentation results. We refer to this
integrated model as a pose-specific CRF. Unlike Kumar et al. [15], our approach
does not require the laborious process of learning exemplars. Instead we use a
simple articulated stickman model, which together with an CRF is used as our
shape prior. The experimental results show that this model suffices to ensure
human-like segmentations.

Given an image, the solution of the pose-specific CRF is used to measure
the quality of a 3D body pose. This cost function is then optimized over all pose
parameters using dynamic graph cuts to provide both a object-like segmenta-
tion and the pose. The astute reader will notice that although we focus on the
human pose inference problem, our method is in-fact general and can be used to
segment and/or infer the pose of any object. We believe that our methodology is
completely novel and we are not aware of any published methods which perform
simultaneous segmentation and pose estimation. To summarize, the novelties of
our approach include:

– An efficient method for combined object segmentation and pose estimation
(PoseCut).

– Integration of a simple ‘stickman prior’ based on the skeleton of the object
in a CRF to obtain a pose-specific CRF which helps us in obtaining high
quality object pose estimate and segmentation results.

In the next section we give an intuitive insight into our framework. The pose-
specific CRF and the different terms used in its construction are introduced in
the same section. In section 3 we formulate the pose inference problem and de-
scribe the use of dynamic graph cuts for optimization in our problem construc-
tion. We present the experimental results obtained by our methods in section 4.
These include qualitative and quantitative results on challenging data sets. We
compare our segmentation results with those obtained by some state of the art
methods. We also show some results of simultaneous 3D pose estimation and
segmentation. Section 5 discusses the extension of our work for object detection.
The conclusions and the directions for future work are listed in Section 6.

2 Pose Specific CRF for Image Segmentation

In this section we define a CRF based energy function that gives the cost of
any pose of a subject. This energy function is minimized using the Powell [24]
minimization algorithm and graph cuts to obtain the pose and segmentation of
the human as described in Section 3. The optimization of the energy is made
efficient by the use of the dynamic graph cut algorithm [22].

Image segmentation has always remained an iconic problem of computer vi-
sion. The past few years have seen rapid progress made on it driven by the



Fig. 2. Interactive Image Segmentation. The figure shows how good segmentation results
can be obtained using a set of rough region cues supplied by the user. (a) An image
with user specified segmentation cues (shown in blue and red). These cues were used to
obtain the segmentation shown in image (b). This segmentation is not perfect and can be
improved by specifying additional cues which are shown in (b). The final segmentation
result is shown in image (c).

emergence of powerful optimization algorithms such as graph cuts. Early meth-
ods for performing image segmentation worked by coupling colour appearance
information about the object and background with the edges present in an image
to obtain good segmentations. However, this framework does not always guar-
antee good results. In particular, it fails in cases where the colour appearance
models of the object and background are not discriminative as seen in figure
1(b). The problem becomes even more pronounced in the case of humans where
we have to deal with the various idiosyncracies of human clothing.

A semi-automated solution to this problem was explored by Boykov and
Jolly [16] in their work on interactive image segmentation. They showed how
users could refine segmentation results by specifying additional constraints. This
can be done by labelling particular regions of the image as ‘object’ or ‘back-
ground’ and then computing the MAP solution of the CRF again. The interac-
tive image segmentation process is illustrated in figure 2. From their work, we
made the following interesting observations:

– Simple user supplied shape cues used as rough priors for the object
segmentation problem produced excellent results.

– The exact shape of the object can be induced from the edge infor-
mation embedded in the image.

Taking these into consideration, we hypothesized that the accurate exemplars
used in [15] to generate shape priors were in-fact an overkill and could be replaced
by much simpler models. Motivated by these observations we decided against
using a sophisticated shape prior. We have used two simple models in our work
which are described below.

Stickman model We used a simple articulated stickman model for the full
body human pose estimation problem. The model is shown in figure 1(e). It



Fig. 3. Upper Body Model. (a) The model parameterized by 6 parameters encoding
the the x and y location of the two shoulders and the length and angle of the neck.
(b) The shape prior generated using the model. Pixels more likely to belong to the
foreground/background are green/red. (c) and (d) The model rendered in two poses.

is used to generate a rough pose-specific shape prior on the segmentation. As
can been seen from the segmentation results in figure 1(d), the stickman model
helped us to obtain excellent segmentation results. The model has 26 degrees
of freedom consisting of parameters defining absolute position and orientation
of the torso, and the various joint angle values. There were no constraints or
joint-limits incorporated in our model.

The Upper body Model The second model was primarily designed for the
problem of segmenting the human speaker in video conference scenarios. The
model can be seen in figure 3. It is parameterized by 6 parameters which encode
the x and y location of the two shoulders and the length and angle of the neck.

We now formally describe how the image segmentation problem can be mod-
eled using a pose-specific CRF.

2.1 Random Fields

A random field comprises of a set of discrete random variables {X1, X2, . . . , Xn}
defined on the index set V , such that each variable Xv takes a value xv from the
label set X = {X1,X2, . . . ,Xl} of all possible labels. We represent the set of all
values xv, ∀v ∈ V by the vector x which takes values in Xn, and is referred to
as the configuration of the random field. Further, we use Nv to denote the set
consisting of indices of all variables which are neighbours of the random variable
Xv in the graphical model. A random field is said to be a MRF with respect to
a neighborhood system N = {Nv|v ∈ V} if and only if it satisfies the positivity
property: Pr(x) > 0 ∀x ∈ Xn, and the Markovian property:

Pr(xv|{xu : u ∈ V − {v}}) = Pr(xv |{xu : u ∈ Nv}) ∀v ∈ V . (1)



Here we refer to Pr(X = x) by Pr(x) and Pr(Xi = xi) by Pr(xi). A conditional
random field (CRF) may be viewed as an MRF globally conditioned on the
data.

The problem of finding the most probable solution of the CRF can be for-
mulated as an energy minimization problem where the energy corresponding to
configuration x is the negative log likelihood of the joint posterior probability of
the CRF and is defined as

E(x) = − logPr(x|D) + const. (2)

where D is the observed data. The minimization problem is independent of the
partition function of the probability distribution.

2.2 CRFs for Image Segmentation

In the context of image segmentation, V corresponds to the set of all image
pixels, N is a neighbourhood defined on this set3, the set X comprises of the
labels representing the different image segments (which in our case are ‘fore-
ground’ and ‘background’), and the value xv denotes the labeling of the pixel
v of the image. Every configuration x of such an CRF defines a segmentation.
The image segmentation problem can thus be solved by finding the least energy
configuration of the CRF. The energy function characterizing the CRFs used
for image segmentation can be written as a sum of likelihood (φ(D|xi)) and prior
(ψ(xi, xj)) terms as:

Ψ1(x) =
∑

i∈V



φ(D|xi) +
∑

j∈Ni

ψ(xi, xj)



 + const. (3)

The term φ(D|xi) in the CRF energy is the data log likelihood which imposes
individual penalties for assigning any label Xk to pixel i. If we only take the
appearance model into consideration, the likelihood is given by

φ(D|xi) = − logPr(i ∈ Vk|Hk) if xi = Xk (4)

where Hk is the RGB (or for grey scale images, the intensity value) distribution
for Sk, the segment denoted by label Xk

4. The probability of a pixel belonging
to a particular segment i.e. Pr(i ∈ Sk|Hk) is proportional to the likelihood
Pr(Ii|Hk), where Ii is the colour intensity of the pixel i. As can be seen from
figure 2(b), this term is rather undiscriminating as the colours (grey intensity
values in this case) included in the foreground histogram are similar to the ones
included in the background histogram.

3 In this paper, we have used the standard 8-neighbourhood i.e. each pixel is connected
to the 8 pixels surrounding it.

4 In our problem, we have only 2 segments i.e. the foreground and the background.



The prior ψ(xi, xj) terms takes the form of a Generalized Potts model:

ψ(xi, xj) =

{

Kij if xi 6= xj ,

0 if xi = xj .
(5)

The CRF used to model the image segmentation problem also contains a con-
trast term which favours pixels with similar colour having the same label [16,
25]. This is incorporated in the energy function by increasing the the cost within
the Potts model for two neighbouring variables being different in proportion to
the similarity in intensities of their corresponding pixels. In our experiments, we
use the function:

γ(i, j) = λ exp

(

−g2(i, j)

2σ2

)

1

dist(i, j)
, (6)

where g2(i, j) measures the difference in the RGB values of pixels i and j and
dist(i, j) gives the spatial distance between i and j. This is a likelihood term
(not prior) as it is based on the data, and hence has to be added separately from
the smoothness prior. The energy function of the CRF now becomes

Ψ2(x) =
∑

i∈V



φ(D|xi) +
∑

j∈Ni

(φ(D|xi, xj) + ψ(xi, xj))



 (7)

The contrast term of the energy function is defined as

φ(D|xi, xj) =

{

γ(i, j) if xi 6= xj

0 if xi = xj .
(8)

By adding this term to the energy, we have diverged from the strict definition of
a MRF. The resulting energy function now characterizes a Conditional Random
Field [26].

Modeling pixel intensities as GMMs The CRF defined above for image
segmentation performs poorly when segmenting images in which the appearance
models of the foreground and background are not highly discriminative. When
working on video sequences, we can use a background model developed using the
Grimson-Stauffer [14] algorithm to improve our results. This algorithm works
by representing the colour distribution of each pixel position in the video as a
Gaussian Mixture Model (GMM). The likelihoods of a pixel for being background
or foreground obtained by this technique are integrated in our CRF. Figure 1(c)
shows the segmentation result obtained after incorporating this information in
our CRF formulation.

2.3 Incorporating the pose-specific Shape Prior

Though the results obtained from the above formulation look decent, they are
not perfect. Note that there is no prior on the segmentation to look human



Fig. 4. Different terms of our pose specific CRF. (a) Original image. (b) The ratios of
the likelihoods of pixels being labelled foreground/background (φ(D|xi = ‘fg’)−φ(D|xi =
‘bg’)). These values are derived from the colour intensity histograms (see Section 2.2).
(c) The segmentation results obtained by using the GMM models of pixel intensities.
(d) The stickman in the optimal pose (see Sections 2.3 and 3). (e) The shape prior
(distance transform) corresponding to the optimal pose of the stickman. (f) The ratio of
the likelihoods of being labelled foreground/background using all the energy terms (colour
histograms defining appearance models, GMMs for individual pixel intensities, and the
pose-specific shape prior (see Sections 2.2, 2.2 and 2.3)) Ψ3(xi = ‘fg’,Θ) − Ψ3(xi =
‘bg’,Θ). (g) The segmentation result obtained from our algorithm which is the MAP
solution of the energy Ψ3 of the pose-specific CRF.



like. Intuitively, incorporating such a constraint in the CRF would improve the
segmentation. In our case, this prior should be pose-specific as it depends on what
pose the object (the human) is in. Kumar et. al. [15] in their work on interleaved
object recognition and segmentation, used the result of the recognition to develop
a shape prior over the segmentation. This prior was defined by a set of latent
variables which favoured segmentations of a specific pose of the object. They
called this model the Object Category Specific CRF, which had the following
energy function:

Ψ3(x,Θ) =
∑

i

(φ(D|xi) + φ(xi|Θ) +
∑

j

(φ(D|xi, xj) + ψ(xi, xj))) (9)

with posterior p(x,Θ|D) = 1

Z3

exp(−Ψ3(x,Θ)). Here Θ ∈ Rp is used to denote
the vector of the object pose parameters. The shape-prior term of the energy
function for a particular pose of the human is shown in figure 4(e). This is a
distance transform generated from the stick-man model silhouette using the fast
implementation of Felzenszwalb and Huttenlocher [27].

The function φ(xi|Θ) was choosen such that given an estimate of the location
and shape of the object, pixels falling near to that shape were more likely to be
labelled as ‘foreground’ and vice versa. It has the form: φ(xi|Θ) = − log p(xi|Θ).
We follow the formulation of [15] and define p(xi|Θ) as

p(xi = figure|Θ) = 1 − p(xi = ground|Θ) =
1

1 + exp(µ ∗ (d(i,Θ) − dr))
, (10)

where d(i,Θ) is the distance of a pixel i from the shape defined by Θ (being
negative if inside the shape). The parameter dr decides how ‘fat’ the shape should
be, while parameter µ determines the ratio of the magnitude of the penalty that
points outside the shape have to face compared to the points inside the shape.

2.4 Inference in the CRF using graph cuts

Energy functions like the one defined in (9) can be solved using graph cuts if
they are sub-modular [28]. A function f : {0, 1} → R is submodular if and only
if all its projections on 2 variables (fp : {0, 1}2 → R) satisfy:

fp(0, 0) + fp(1, 1) ≤ fp(0, 1) + fp(1, 0). (11)

For the pairwise potentials, this condition can be seen as implying that the
energy for two labels taking similar values should be less than the energy for
them taking different values. In our case, this is indeed the case and thus we can
find the optimal configuration x∗ = minx Ψ3(x,Θ) using a single graph cut. The
labels of the latent variable in this configuration give the segmentation solution.



Fig. 5. Inferring the optimal pose. a) The values of minx Ψ3(x,Θ) obtained by varying
the global translation and rotation of the shape prior in the x-axis. b) Original image.
c) The pose obtained corresponding to the global minimum of the energy.

3 Formulating the Pose Inference Problem

Since the segmentation of an object depends on its estimated pose, we would
like to make sure that our shape prior reflects the actual pose of the object. This
takes us to our original problem of finding the pose of the human in an image. In
order to solve this, we start with an initial guess of the object pose and optimize
it to find the correct pose. When dealing with videos, a good starting point for
this process would be the pose of the object in the previous frame. However,
more sophisticated methods could be used based on object detection [29] at the
expense of increasing the computation time.

One of the key contributions of this paper is to show how given an image
of the object, the pose inference problem can be formulated in terms of an
optimization problem over the CRF energy given in (9). Specifically, we solve
the problem:

Θopt = argmin
Θ,x

Ψ3(x,Θ)). (12)

The minimization problem defined above contains both discrete (x ∈ {0, 1}n)
and continuous (Θ ∈ RP ) valued variables and thus is a mixed integer program-
ming problem. The large number of variables involved in the energy function
Ψ3(x,Θ)) make it especially challenging to minimize. To solve the minimization
problem (12), we decompose it as: Θopt = arg minΘ F(Θ), where

F(Θ) = min
x
Ψ3(x,Θ)). (13)



For any value of Θ, the function Ψ3(x,Θ)) is submodular in x and thus can be
minimized in polynomial time by solving a single st-mincut problem to give the
value of F(Θ).

We will now explain how we minimize F(Θ) to get the optimal value of the
pose parameters. Figure 5 shows how the function F(Θ) depends on parameters
encoding the rotation and translation of our stickman model in the x-axes. It
can be seen that the function surface is unimodal in a large neighbourhood of
the optimal solution. Hence, given a good initialization of the pose Θ, it can
be reliably optimized using any standard optimization algorithm like gradient
descent. In our experiments, we used the Powell minimization [24] algorithm for
optimization.
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Fig. 6. Optimizing the pose parameters. (a) The values of minx Ψ3(x,Θ) obtained by
varying the rotation and length parameters of the neck. (b) The image shows five runs
of the powell minimization algorithm which are started from different initial solutions.
The runs converge on two solutions which are very close and have almost the same
energy.

Figure 6(a) shows how the function F(Θ) changes with changes to the neck
angle and length parameters of the upper body model shown in figure 3. As in
the case of the 3D stickman model the energy surface is well behaved near the
optimal pose parameters. Our experiments showed that the Powell minimization
algorithm is able to converge to almost the same point for different initializations
(see figure Figure 6(b)).

Failure Modes It can be seen that the function F(Θ) is not unimodal over the
whole domain and contains local minima. This multi-modality of F(Θ) can cause
a gradient descent algorithm to get trapped and converge to a local minimum. In
our experiments we observed that these spurious minima lie quite far from the
globally optimal solution. We also observed that the pose of the human subject



generally does not change substantially from one frame to the next. This lead
us to use the pose estimate from the previous frame as an initialization for the
current frame. This good initialization for the pose estimate made sure that
spurious minima do not effect our method.

The failure rate of our method can be further improved by using object
detection systems which provide a better initialization of the pose of the object.
Scenarios where the method still converges to a local minima can be detected
and dealt with using the strategy discussed in section 5 which was used in our
recent work on object detection and segmentation [30].

Fig. 7. Resolving ambiguity using multiple views. The figure shows how information
from different views of the human can be integrated in a single energy function, which
can be used to find the true pose of the human subject.

Resolving ambiguity using multiple views The problem of estimating the
3D pose of the human from monocular images suffers from ambiguity. This arises
from the one-many nature of the mapping that relates a human shape and the
corresponding 3D human pose. In other words, many possible 3D poses can
explain the same human shape, and thus will have the same energy. This multi-
modality of the energy function may result in our algorithm producing a wrong
pose estimate.

The ambiguity in 3D pose can be resolved by using multiple views of the
object (‘human’). Our method has the advantage that information from mul-
tiple views can be integrated very easily into a single optimization framework.
Specifically, when dealing with multiple views, we solve the problem:

Θopt = argmin
Θ

(
∑

Views

min
x

(Ψ3(x,Θ)). (14)



The framework is illustrated in figure 7. An alternative approach to deal with
the pose ambiguity problem is to use a dynamic model for the pose [31]. Such a
model, given the correct pose in a particular image frame, can produce a small
set of plausible poses for the subsequent image frame. However, this method is
only applicable when we are dealing with videos.

Dynamic energy minimization using graph cuts As explained earlier
global minima of energies like the one defined in (9) can be found by graph
cuts [28]. The time taken for computing a graph cut for a reasonably sized CRF
is of the order of seconds. This would make our optimization algorithm extremely
slow since we need to compute the global optimum of Ψ3(x,Θ) with respect to
x multiple number times for different values of Θ. The graph cut computation
can be made significantly faster by using the dynamic graph cut algorithm pro-
posed recently in [22]. This algorithm works by using the solution of the previous
graph cut computation for solving the new instance of the problem. We obtained
a speed-up in the range of 15-20 times by using the dynamic graph cut algorithm.

4 Experiments

We now discuss the results obtained by our method. We provide the segmentation
and pose estimation results individually.

4.1 Segmentation Results

As expected, the experimental results show that the segmentation results im-
prove considerably as we increase the amount of information in our CRF frame-
work. Figure 8 shows how integrating more information in the CRF improves
the segmentation results. Quantitative results for the segmentation problem are
shown in table 1.

Information Used Correct object pixels All correct pixels

Colour 45.73% 95.2%
Colour + GMM 82.48% 96.9%

Colour + GMM +Shape 97.43% 99.4%

Table 1. Quantitative segmentation results. The table shows the effect of adding more
information in the Bayesian framework on the quantitative segmentation accuracy. The
accuracy was computed over all the pixels in the image. The ground truth for the data
used in this experiment was generated by hand labelling the foreground and background
regions in the images.

In order to demonstrate the performance of our method, we compare our
segmentation results with those obtained using the method proposed in [14].



Fig. 8. Results showing the effect of incorporating a shape prior on the segmentation
results. The first image is the original image to be segmented. The second, third and
fourth images shows the segmentation results obtained using colour, colour + smooth-
ness prior and colour + smoothness + shape information respectively.

It can be seen from the results in figure 10 that the segmentations obtained
using the method of [14] are not accurate: They contain “speckles” and often
segment the shadows of the feet as foreground. This is expected as they use
only a pixelwise term to differentiate the background from the foreground and
do not incorporate any spatial term which could offer a better “smoothing”. In
contrast, PoseCut which uses a pairwise potential term (as any standard graph
cut approach) and a shape prior (which guarantees a human-like segmentation),
is able to provide accurate results.

Our experiments on segmenting humans using the 2D upper body model
(figure 3) also produced good results. For these experiments, video sequences
from the Microsoft Research bilayer video segmentation data-set [32] were used.
The results of our method are shown in figure 9.

4.2 Segmentation and pose estimation.

Figures 11 and 12 present the segmentations and the pose estimates obtained
using PoseCut. The first data set comprises of three views of human walking
circularly. The time needed for computation of the 3D pose estimate, on an Intel
Pentium 2GHz machine, when dealing with 644×484 images, is about 50 seconds
per view5. As shown in these figures, the pose estimates match the original
images accurately. In Figures 11 and 12, it should be noted that the appearance

5 However, this could be speed up by computing the parameters of the CRF in an
FPGA (Field-programmable gate array).



Fig. 9. Segmentation results using the 2D upper body model. The first row shows some
frames from the video sequence. The second row shows the initial values of the pose
parameters of the model and the resulting segmentations. The last row shows the final
pose estimate and segmentation obtained using our method.

models of the foreground and background are quite similar: for instance, in
Figure 12, the clothes of the subject are black in colour and the floor in the
background is rather dark. The accuracy of the segmentation obtained in such
challenging conditions demonstrates the robustness of PoseCut. An interesting
fact to observe in Figure 11 about frame 95 is that the torso rotation of the
stickman does not exactly conform with the original pose of the object. However,
the segmentation of these frames is still accurate.

5 Discussion

Localizing the object in the image and inferring its pose is a computationally
expensive task. Once a rough estimate of the object pose is obtained, the seg-
mentation can be computed extremely efficiently using graph cuts [23]. In our
work on real time face detection and segmentation [30], we showed how an off
the shelf face-detector such as the one described in [33] can be coupled with a
CRF to get accurate segmentation and improved face detection results in real
time.

The object (face) localization estimate (obtained from any generic face de-
tector) was incorporated in a discriminative CRF framework to obtain robust
and accurate face segmentation results as shown in figure 13. The energy E(x∗)
of any segmentation solution x∗ is the negative log of the probability, and can be
viewed as a measure of how uncertain that solution is. The higher the energy of
a segmentation, the lower the probability that it is a good segmentation. Intu-
itively, if the face detection is correct, the resulting segmentation obtained from
our method should have high probability and hence have low energy compared



Fig. 10. Segmentation results obtained by Grimson-Stauffer[14] and PoseCut.

to that of false detections. This characteristic of the energy of the segmentation
solution can be used to prune out false face detections thus improving the face
detection accuracy. The procedure is illustrated in figure 14. A similar strategy
was recently used in [34].

6 Conclusions and Future Work

The paper sets out a novel method for performing simultaneous segmentation
and 3D pose estimation (PoseCut). The problem is formulated in a Bayesian



Fig. 11. Segmentation (middle) and pose estimation (bottom) results from PoseCut.

framework which has the ability to utilize all information available (prior as well
as observed data) to obtain good results. We showed how a rough pose-specific
shape prior could be used to improve segmentation results significantly. We also
gave a new formulation of the pose inference problem as an energy minimization
problem and showed how it could be efficiently solved using dynamic graph
cuts. The experiments demonstrate that our method is able to obtain excellent
segmentation and pose estimation results. This method was recently also used
for the problem of reconstructing objects from multiple views [35].

Searching over Pose Manifolds It is well known that the set of all human
poses constitutes a low-dimensional manifold in the complete pose space [36, 7,
8]. Most work in exploiting this fact for human pose inference has been limited
to finding linear manifolds in pose spaces. The last few years have seen the
emergence of non-linear dimensionality reduction techniques for solving the pose
inference problem [37]. Recently, Urtasun et al. [7] showed how Scaled Gaussian
Process Latent Variable Models (SGPLVM) can be used to learn prior models
of human pose for 3D people tracking. They showed impressive pose inference
results using monocular data. Optimizing over a parametrization of this low
dimensional space instead of the 26D pose vector would intuitively improve
both the accuracy and computation efficiency of our algorithm. Thus the use
of dimensionality reduction algorithms is an important area to be investigated.
The directions for future work also include using an appearance model per limb,



Fig. 12. Segmentation (middle row) and pose estimation (bottom row) results obtained
by PoseCut. Observe that although the foreground and background appearances are
similar, our algorithm is able to obtain good segmentations.

Fig. 13. Real Time Face Segmentation using a face detections. The first image on the
first row shows the original image. The second image shows the face detection results.
The image on the second row shows the segmentation obtained by using shape priors
generated using the detection and localization results.

which being more discriminative could help provide more accurate segmentations
and pose estimates.



Fig. 14. The figure shows an image from the INRIA pedestrian data set. After running
our algorithm, we obtain four face segmentations, one of which (the one bounded by
a black square) is a false detection. The energy-per-pixel values obtained for the true
detections were 74, 82 and 83 while that for the false detection was 87. As you can see
the energy of false detection is significantly higher than that of the true detections, and
can be used to detect and remove it.
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