4,373 research outputs found

    Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine

    Get PDF
    Four burned area tools were implemented in Google Earth Engine (GEE), to obtain regular processes related to burned area (BA) mapping, using medium spatial resolution sensors (Landsat and Sentinel-2). The four tools are (i) the BA Cartography tool for supervised burned area over the user-selected extent and period, (ii) two tools implementing a BA stratified random sampling to select the scenes and dates for validation, and (iii) the BA Reference Perimeter tool to obtain highly accurate BA maps that focus on validating coarser BA products. Burned Area Mapping Tools (BAMTs) go beyond the previously implemented Burned Area Mapping Software (BAMS) because of GEE parallel processing capabilities and preloaded geospatial datasets. BAMT also allows temporal image composites to be exploited in order to obtain BA maps over a larger extent and longer temporal periods. The tools consist of four scripts executable from the GEE Code Editor. The tools’ performance was discussed in two case studies: in the 2019/2020 fire season in Southeast Australia, where the BA cartography detected more than 50,000 km2, using Landsat data with commission and omission errors below 12% when compared to Sentinel-2 imagery; and in the 2018 summer wildfires in Canada, where it was found that around 16,000 km2 had burned.This research was funded by the Vice-Rectorate for Research of the University of the Basque Country (UPV/EHU) through a doctoral fellowship (contract no. PIF17/96)

    Space assets and technology for bushfire management

    Get PDF
    The financial, emotional, and ecological impacts of bushfires can be devastating. This report was prepared by the participants of the Southern Hemisphere Space Studies Program 2021 in response to the topic: “How space assets and technologies can be applied to better predict and mitigate bushfires and their impacts.” To effectively reach the diverse set of stakeholders impacted by bushfires, Communication was identified as a key enabler central to any examination of the topic. The three pillars “predict”, “mitigate” and “communicate” were identified to frame the task at hand. Combining the diverse skills and experience of the class participants with the interdisciplinary knowledge gained from the seminars, distinguished lectures, and workshops during the SHSSP21 program, conducted a literature review With specific reference to the 2019-20 Australian fire season, we looked at the current state of the art, key challenges, and how bushfires can be better predicted and mitigated in the future. Comparing this to the future desired state, we identified gaps for each of the three domains, and worked across teams to reach consensus on a list of recommendations. Several of these recommendations were derived independently by two or more of the three groups, highlighting the importance of a holistic and collaborative approach. The report details a number of recommendations arising from this Where applicable, we also aligned our discussion with the experience and lessons from other countries and agencies to consider,learn from and respond to the international context, as others develop systems using space technology to tackle similar wildfire issues

    Multitemporal Remote Sensing Based on an FVC Reference Period Using Sentinel-2 for Monitoring Eichhornia crassipes on a Mediterranean River

    Get PDF
    International audienceInvasive aquatic plants are a serious global ecological and socio-economic problem because they can cause local extinction of native species and alter navigation and fishing. Eichhornia crassipes (water hyacinth) is a dangerous invasive floating plant that is widely distributed throughout the world. In Lebanon, it has spread since 2006 in the Al Kabir River. Remote sensing techniques have been widely developed to detect and monitor dynamics and extents of invasive plants such as water hyacinth over large areas. However, they become challenging to use in narrow areas such as the Al Kabir River and we developed a new image-analysis method to extract water hyacinth areas on the river. The method is based on a time series of a biophysical variable obtained from Sentinel-2 images. After defining a reference period between two growing cycles, we used the fractional vegetation cover (FVC) to estimate the water hyacinth surface area in the river. This method makes it possible to monitor water hyacinth development and estimate the total area it colonizes in the river corridor. This method can help ecologists and other stakeholders to map invasive plants in rivers and improve their control

    Mapping the national seagrass extent in Seychelles using PlanetScope NICFI data

    Get PDF
    Seagrasses provide ecosystem services worth USD 2.28 trillion annually. However, their direct threats and our incomplete knowledge hamper our capabilities to protect and manage them. This study aims to evaluate if the NICFI Satellite Data Program basemaps could map Seychelles’ extensive seagrass meadows, directly supporting the country’s ambitions to protect this ecosystem. The Seychelles archipelago was divided into three geographical regions. Half-yearly basemaps from 2015 to 2020 were combined using an interval mean of the 10th percentile and median before land and deep water masking. Additional features were produced using the Depth Invariant Index, Normalised Differences, and segmentation. With 80% of the reference data, an initial Random Forest followed by a variable importance analysis was performed. Only the top ten contributing features were retained for a second classification, which was validated with the remaining 20%. The best overall accuracies across the three regions ranged between 69.7% and 75.7%. The biggest challenges for the NICFI basemaps are its four-band spectral resolution and uncertainties owing to sampling bias. As part of a nationwide seagrass extent and blue carbon mapping project, the estimates herein will be combined with ancillary satellite data and contribute to a full national estimate in a near-future report. However, the numbers reported showcase the broader potential for using NICFI basemaps for seagrass mapping at scale

    Measuring Urban Green Space in Australia

    Full text link
    The Hort Innovation Green Cities project “Measuring Australia’s Green Space Asset” (MUGS) undertook a global review of urban green space (UGS) measurement research and engaged with Australian stakeholders to gauge current practice. The overall aim of the project was to foster best-practice UGS planning and management by juxtaposing the scientific state of the art with the contextualised needs expressed by potential Australian end users. The synthesis of findings informed a ‘blueprint’ which sketches the contours of a possible nationally consistent UGS decision-support framework. The framework is illustrated with a worked example from Australia (rapid assessment of urban green space assets using satellite imagery)

    RADAR-vegetation structural perpendicular index (R-VSPI) for the quantification of wildfire impact and post-fire vegetation recovery

    Get PDF
    The precise information on fuel characteristics is essential for wildfire modelling and management. Satellite remote sensing can provide accurate and timely measurements of fuel characteristics. However, current estimates of fuel load changes from optical remote sensing are obstructed by seasonal cloud cover that limits their continuous assessments. This study utilises remotely sensed Synthetic-Aperture Radar (SAR) (Sentinel-1 backscatter) data as an alternative to optical-based imaging (Sentinel-2 scaled surface reflectance). SAR can penetrate clouds and offers high-spatial and medium-temporal resolution datasets and can hence complement the optical dataset. Inspired by the optical-based Vegetation Structural Perpendicular Index (VSPI), an SAR-based index termed RADAR-VSPI (R-VSPI) is introduced in this study. R-VSPI characterises the spatio-temporal changes in fuel load due to wildfire and the subsequent vegetation recovery thereof. The R-VSPI utilises SAR backscatter (σ°) from the co-polarized (VV) and cross-polarized (VH) channels at a centre frequency of 5.4 GHz. The newly developed index is applied over major wildfire events that occurred during the “Black Summer” wildfire season (2019–2020) in southern Australia. The condition of the fuel load was mapped every 5 (any orbit) to 12 (same orbit) days at an aggregated spatial resolution of 110 m. The results show that R-VSPI was able to quantify fuel depletion by wildfire (relative to healthy vegetation) and monitor its subsequent post-fire recovery. The information on fuel condition and heterogeneity improved at high-resolution by adapting the VSPI on a dual-polarization SAR dataset (R-VSPI) compared to the historic forest fuel characterisation methods (that used visible and infrared bands only for fuel estimations). The R-VSPI thus provides a complementary source of information on fuel load changes in a forest landscape compared to the optical-based VSPI, in particular when optical observations are not available due to cloud cover

    Earth observation for water resource management in Africa

    Get PDF
    • 

    corecore