203 research outputs found

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    SEEdit: SELinux Security Policy Configuration System with Higher Level Language

    Get PDF
    Security policy for SELinux is usually created by customizing a sample policy called refpolicy. However, describing and verifying security policy configurations is difficult because in refpolicy, there are more than 100,000 lines of configurations, thousands of elements such as permissions, macros and labels. The memory footprint of refpolicy which is around 5MB, is also a problem for resource constrained devices. We propose a security policy configuration system SEEdit which facilitates creating security policy by a higher level language called SPDL and SPDL tools. SPDL reduces the number of permissions by integrated permissions and removes label configurations. SPDL tools generate security policy configurations from access logs and tool user’s knowledge about applications. Experimental results on an embedded system and a PC system show that practical security policies are created by SEEdit, i.e., describing configurations is semiautomated, created security policies are composed of less than 500 lines of configurations, 100 configuration elements, and thememory footprint in the embedded system is less than 500KB

    Android security framework : enabling generic and extensible access control on Android

    Get PDF
    We introduce the Android Security Framework (ASF),a generic, extensible security framework for Android that enables the development and integration of a wide spectrum of security models in form of code-based security modules. The design of ASF reflects lessons learned from the literature on established security frameworks (such as Linux Security Modules or the BSD MAC Framework) and intertwines them with the particular requirements and challenges from the design of Android’s software stack. ASF provides a novel security API that supports authors of Android security extensions in developing their modules. This overcomes the current unsatisfactory situation to provide security solutions as separate patches to the Android software stack or to embed them into Android’s mainline codebase. As a result, ASF provides different practical benefits such as a higher degree of acceptance, adaptation, and maintenance of security solutions than previously possible on Android. We present a prototypical implementation of ASF and demonstrate its effectiveness and efficiency by modularizing different security models from related work, such as context-aware access control, inlined reference monitoring, and type enforcement
    • …
    corecore