590 research outputs found

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    How TRAF-NETSIM Works.

    Get PDF
    This paper describes how TRAF-NETSIM works in detail. It is a review of the TRAF-NETSIM micro-simulation model, for use in the research topic "The Development of Queueing Simulation Procedures for Traffic in Bangkok". TRAF-NETSIM is a computer program for modelling of traffic in urban networks. It is written in the FORTRAN 77 computer language. It uses bit-manipulation mechanisms for "packing" and "unpacking" data and a program overlay structure to reduce the computer memory requirements of the program. The model is based on a fixed time, and discrete event simulation approach. The periodic scan method is used in the model with a time interval of one second. In the model, up to 16 different vehicle types with 4 different vehicle categories (car, carpool, bus and truck) can be identified. Also, the driver's behaviour (passive, normal, aggressive), pedestrians' movement, parking and blocking (eg a broken-down car) can be simulated. Moreover, it has the capability to simulate the effects of traffic control ranging from a simple stop sign controlled junction to a dynamic/real time control system. The effects of spillbacks can be simulated in detail. The estimation of fuel consumption and vehicle emissions are optional simulations. Car following and lane changing models are incorporated into TRAF-NETSIM. The outputs can be shown in US standard units, Metric units, or both

    A discrete contact model for crowd motion

    Get PDF
    The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: We first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people; The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities (i.e. velocities which do not violate the non-overlapping constraint). We describe here the underlying mathematical framework, and we explain how recent results by J.F. Edmond and L. Thibault on the sweeping process by uniformly prox-regular sets can be adapted to handle this situation in terms of well-posedness. We propose a numerical scheme for this contact dynamics model, based on a prediction-correction algorithm. Numerical illustrations are finally presented and discussed.Comment: 22 page

    Handling congestion in crowd motion modeling

    Full text link
    We address here the issue of congestion in the modeling of crowd motion, in the non-smooth framework: contacts between people are not anticipated and avoided, they actually occur, and they are explicitly taken into account in the model. We limit our approach to very basic principles in terms of behavior, to focus on the particular problems raised by the non-smooth character of the models. We consider that individuals tend to move according to a desired, or spontanous, velocity. We account for congestion by assuming that the evolution realizes at each time an instantaneous balance between individual tendencies and global constraints (overlapping is forbidden): the actual velocity is defined as the closest to the desired velocity among all admissible ones, in a least square sense. We develop those principles in the microscopic and macroscopic settings, and we present how the framework of Wasserstein distance between measures allows to recover the sweeping process nature of the problem on the macroscopic level, which makes it possible to obtain existence results in spite of the non-smooth character of the evolution process. Micro and macro approaches are compared, and we investigate the similarities together with deep differences of those two levels of description
    corecore