24,730 research outputs found

    Mining Partially-Ordered Sequential Rules Common to Multiple Sequences

    Full text link
    © 2015 IEEE. Sequential rule mining is an important data mining problem with multiple applications. An important limitation of algorithms for mining sequential rules common to multiple sequences is that rules are very specific and therefore many similar rules may represent the same situation. This can cause three major problems: (1) similar rules can be rated quite differently, (2) rules may not be found because they are individually considered uninteresting, and (3) rules that are too specific are less likely to be used for making predictions. To address these issues, we explore the idea of mining "partially-ordered sequential rules" (POSR), a more general form of sequential rules such that items in the antecedent and the consequent of each rule are unordered. To mine POSR, we propose the RuleGrowth algorithm, which is efficient and easily extendable. In particular, we present an extension (TRuleGrowth) that accepts a sliding-window constraint to find rules occurring within a maximum amount of time. A performance study with four real-life datasets show that RuleGrowth and TRuleGrowth have excellent performance and scalability compared to baseline algorithms and that the number of rules discovered can be several orders of magnitude smaller when the sliding-window constraint is applied. Furthermore, we also report results from a real application showing that POSR can provide a much higher prediction accuracy than regular sequential rules for sequence prediction

    Feature-based time-series analysis

    Full text link
    This work presents an introduction to feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of feature-based representations for time series that have been developed to aid interpretable insights into time-series structure. Particular emphasis is given to emerging research that facilitates wide comparison of feature-based representations that allow us to understand the properties of a time-series dataset that make it suited to a particular feature-based representation or analysis algorithm. The future of time-series analysis is likely to embrace approaches that exploit machine learning methods to partially automate human learning to aid understanding of the complex dynamical patterns in the time series we measure from the world.Comment: 28 pages, 9 figure

    A model-based multithreshold method for subgroup identification

    Get PDF
    Thresholding variable plays a crucial role in subgroup identification for personalizedmedicine. Most existing partitioning methods split the sample basedon one predictor variable. In this paper, we consider setting the splitting rulefrom a combination of multivariate predictors, such as the latent factors, principlecomponents, and weighted sum of predictors. Such a subgrouping methodmay lead to more meaningful partitioning of the population than using a singlevariable. In addition, our method is based on a change point regression modeland thus yields straight forward model-based prediction results. After choosinga particular thresholding variable form, we apply a two-stage multiple changepoint detection method to determine the subgroups and estimate the regressionparameters. We show that our approach can produce two or more subgroupsfrom the multiple change points and identify the true grouping with high probability.In addition, our estimation results enjoy oracle properties. We design asimulation study to compare performances of our proposed and existing methodsand apply them to analyze data sets from a Scleroderma trial and a breastcancer study
    • …
    corecore