139 research outputs found

    Parallel computing of numerical schemes and big data analytic for solving real life applications

    Get PDF
    This paper proposed the several real life applications for big data analytic using parallel computing software. Some parallel computing software under consideration are Parallel Virtual Machine, MATLAB Distributed Computing Server and Compute Unified Device Architecture to simulate the big data problems. The parallel computing is able to overcome the poor performance at the runtime, speedup and efficiency of programming in sequential computing. The mathematical models for the big data analytic are based on partial differential equations and obtained the large sparse matrices from discretization and development of the linear equation system. Iterative numerical schemes are used to solve the problems. Thus, the process of computational problems are summarized in parallel algorithm. Therefore, the parallel algorithm development is based on domain decomposition of problems and the architecture of difference parallel computing software. The parallel performance evaluations for distributed and shared memory architecture are investigated in terms of speedup, efficiency, effectiveness and temporal performance

    NASA high performance computing and communications program

    Get PDF
    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project

    Injector Design Tool Improvements: User's manual for FDNS V.4.5

    Get PDF
    The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort

    High-performance computing for vision

    Get PDF
    Vision is a challenging application for high-performance computing (HPC). Many vision tasks have stringent latency and throughput requirements. Further, the vision process has a heterogeneous computational profile. Low-level vision consists of structured computations, with regular data dependencies. The subsequent, higher level operations consist of symbolic computations with irregular data dependencies. Over the years, many approaches to high-speed vision have been pursued. VLSI hardware solutions such as ASIC's and digital signal processors (DSP's) have provided good processing speeds on structured low-level vision tasks. Special purpose systems for vision have also been designed. Currently, there is growing interest in using general purpose parallel systems for vision problems. These systems offer advantages of higher performance, sofavare programmability, generality, and architectural flexibility over the earlier approaches. The choice of low-cost commercial-off-theshelf (COTS) components as building blocks for these systems leads to easy upgradability and increased system life. The main focus of the paper is on effectively using the COTSbased general purpose parallel computing platforms to realize high-speed implementations of vision tasks. Due to the successful use of the COTS-based systems in a variety of high performance applications, it is attractive to consider their use for vision applications as well. However, the irregular data dependencies in vision tasks lead to large communication overheads in the HPC systems. At the University of Southern California, our research efforts have been directed toward designing scalable parallel algorithms for vision tasks on the HPC systems. In our approach, we use the message passing programming model to develop portable code. Our algorithms are specified using C and MPI. In this paper, we summarize our efforts, and illustrate our approach using several example vision tasks. To facilitate the analysis and development of scalable algorithms, a realistic computational model of the parallel system must be used. Several such models have been proposed in the literature. We use the General-purpose Distributed Memory (GDM) model which is a simple but realistic model of state-of-theart parallel machines. Using the GDM model, generic algorithmic techniques such as data remapping, overlapping of communication with computation, message packing, asynchronous execution, and communication scheduling are developed. Using these techniques, we have developed scalable algorithms for many vision tasks. For instance, a scalable algorithm for linear approximation has been developed using the asynchronous execution technique. Using this algorithm, linear feature extraction can be performed in 0.065 s on a 64 node SP-2 for a 512 × 512 image. A serial implementation takes 3.45 s for the same task. Similarly, the communication scheduling and decomposition techniques lead to a scalable algorithm for the line grouping task. We believe that such an algorithmic approach can result in the development of scalable and portable solutions for vision tasks. © 1996 IEEE Publisher Item Identifier S 0018-9219(96)04992-4.published_or_final_versio

    HPCCP/CAS Workshop Proceedings 1998

    Get PDF
    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey

    Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Full text link
    corecore