3,139 research outputs found

    State of Alaska Election Security Project Phase 2 Report

    Get PDF
    A laska’s election system is among the most secure in the country, and it has a number of safeguards other states are now adopting. But the technology Alaska uses to record and count votes could be improved— and the state’s huge size, limited road system, and scattered communities also create special challenges for insuring the integrity of the vote. In this second phase of an ongoing study of Alaska’s election security, we recommend ways of strengthening the system—not only the technology but also the election procedures. The lieutenant governor and the Division of Elections asked the University of Alaska Anchorage to do this evaluation, which began in September 2007.Lieutenant Governor Sean Parnell. State of Alaska Division of Elections.List of Appendices / Glossary / Study Team / Acknowledgments / Introduction / Summary of Recommendations / Part 1 Defense in Depth / Part 2 Fortification of Systems / Part 3 Confidence in Outcomes / Conclusions / Proposed Statement of Work for Phase 3: Implementation / Reference

    Cost Benefit Evaluation of Maintenance Options for Aging Equipment Using Monetised Risk Values: A practical application

    Get PDF
    With constant pressure to reduce maintenance costs as well as short-term budget constraints in a changing market environment, asset managers are compelled to continue operating aging assets while deferring maintenance and investment. The scope of the paper is to get an overview of the methods used to evaluate risks and opportunities for deferred maintenance interventions on aging equipment, and underline the importance to include monetised risk considerations and timeline considerations, to evaluate different scenarios connected with the possible options. Monetised risk values offer the opportunity to support risk-based decision-making using the data collected from the field. The paper presents examples of two different methods and their practical applicability in two case studies in the energy sector for a company managing power stations. The use of the existing and the new proposed solutions are discussed on the basis of their applicability to the concrete examples

    Cost benefit evaluation of maintenance options for aging equipment using monetised risk values: A practical application

    Get PDF
    With constant pressure to reduce maintenance costs as well as short-term budget constraints in a changing market environment, asset managers are compelled to continue operating aging assets while deferring maintenance and investment. The scope of the paper is to get an overview of the methods used to evaluate risks and opportunities for deferred maintenance interventions on aging equipment, and underline the importance to include monetised risk considerations and timeline considerations, to evaluate different scenarios connected with the possible options. Monetised risk values offer the opportunity to support risk-based decision-making using the data collected from the field. The paper presents examples of two different methods and their practical applicability in two case studies in the energy sector for a company managing power stations. The use of the existing and the new proposed solutions are discussed on the basis of their applicability to the concrete examples

    Weathering the Nest: Privacy Implications of Home Monitoring for the Aging American Population

    Get PDF
    The research in this paper will seek to ascertain the extent of personal data entry and collection required to enjoy at least the minimal promised benefits of distributed intelligence and monitoring in the home. Particular attention will be given to the abilities and sensitivities of the population most likely to need these devices, notably the elderly and disabled. The paper will then evaluate whether existing legal limitations on the collection, maintenance, and use of such data are applicable to devices currently in use in the home environment and whether such regulations effectively protect privacy. Finally, given appropriate policy parameters, the paper will offer proposals to effectuate reasonable and practical privacy-protective solutions for developers and consumers

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    The IceCube Neutrino Observatory: Instrumentation and Online Systems

    Get PDF
    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review and proofin

    Journal of Telecommunications in Higher Education

    Get PDF
    In this Issue 6 The Synergy of Network Convergence and the IP Infrastructure 12 Leveraging the IP Network at the University of Oregon 18 How the Internet Will Change Network Management 26 Voice Over IP: The Stakes Get Higher 30 Abilene: An Advanced Research Network 34 Web-Based Systems on the 21st-Century Campus 46 Bill D. Morris Award: Whitney Johnso

    Implementing operator-centric cockpit design in the EA-6B ICAP III aircraft

    Get PDF
    The EA-6B Prowler aircraft was designed and built in the late 1960s by the Grumman Aerospace Corporation for the United States Navy and Marine Corps as a tactical electronic warfare (EW) platform. High losses of U.S attack aircraft to surface-to-air missiles (SAMs) in the Southeast Asia theater led to the requirement for a carrier-based tactical aircraft capable of providing EW support in the form of electronic jamming in support of strike aircraft. The EA-6B became the aircraft that fulfilled the EW requirement. The thirty years that have passed since the introduction of the EA-6B has seen many additional weapons system capabilities added to the aircraft. However, the hardware used by the aircrew to employ these additional capabilities has changed little, resulting in operator information overload during combat operations. This thesis investigated the information overload problem associated with operating a complex integrated weapons system using legacy and non-integrated controls and displays. A review of pertinent literature and military standards, coupled with the author\u27s extensive personal experience as an EA-6B Electronic Countermeasures Officer were used as the basis of research An operator-centric cockpit design methodology utilizing human factors engineering and the systems engineering approach to problem-solving was used to identify problems associated with the contractor\u27s proposed cockpit design for the Improved Capability III (ICAP III) EA-6B Prowler aircraft. The problems identified were. (1) critical weapons system failure alerts can go unnoticed by the ECMOs, (2) a limited display area is available for the presentation of weapons system information, (3) a high operator workload is required to monitor the status of the AN/ALQ-99 jammer pods, (4) navigational situational awareness in the rear cockpit is extremely poor, (5) the current rear cockpit pointing devices increase logistical support requirements and enforce negative habit transfer, and (6) alphanumeric character entry into the integrated weapons system is inefficient Once identified, the methodology was employed by the author to develop a proposed cockpit design that will eliminate the problems and improve operator and system performance. If adopted and implemented by the manufacturers of the ICAP III program, the cockpit hardware and layout changes proposed by the author will result in minimal friction at the system interfaces, thus improving overall system performance Specific recommendations that should be included to the ICAP III cockpit design are: Install a synthesized weapons system voice warning system to provide aural alerts to the ECMO 2/3 crew stations in the event of jammer pod degradations during active Electronic Attack operations. Install 8 5 inches wide by 11 inches tall (93 5 m2) color-capable AMLCD Multifunction Displays at each of the ECMO 2/3 crew stations to provide for operator visual interaction with the weapons system. Install 7 5 inches wide by 65 inches tall (48.75 square inches) color-capable AMLCD Pod Status Displays at each of the ECMO 2/3 crew stations to provide an automated real-time simultaneous status display of the ALQ-99 jammer pods Install 3.9 inches wide by 3.3 inches tall (12.87 square inches) Electronic Horizontal Situation Indicators repeaters at each of the ECMO 2/3 crew stations to assist in navigational situational awareness. Install pointing devices on the ECMO 2/3 consoles that are identical to the pointing devices installed in the forward cockpit to provide for operator tactile interaction with the weapons system Install 4.75 inches wide by 5 75 inches tall (27.3 square inches) touch-sensitive data entry keyboards on the ECMO 2/3 pedestals to serve as a primary alphanumeric entry device and secondary tactile interface with the weapons system

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies
    • …
    corecore