4 research outputs found

    Encapsulating Formal Methods within Domain Specific Languages: A Solution for Verifying Railway Scheme Plans

    Get PDF
    Abstract The development and application of formal methods is a long standing research topic within the field of computer science. One particular challenge that remains is the uptake of formal methods into industrial practices. This paper introduces a methodology for developing domain specific languages for modelling and verification to aid in the uptake of formal methods within industry. It illustrates the successful application of this methodology within the railway domain. The presented methodology addresses issues surrounding faithful modelling, scalability of verification and accessibility to modelling and verification processes for practitioners within the domain

    Extending relational model transformations to better support the verification of increasingly autonomous systems

    Get PDF
    Over the past decade the capabilities of autonomous systems have been steadily increasing. Unmanned systems are moving from systems that are predominantly remotely operated, to systems that include a basic decision making capability. This is a trend that is expected to continue with autonomous systems making decisions in increasingly complex environments, based on more abstract, higher-level missions and goals. These changes have significant implications for how these systems should be designed and engineered. Indeed, as the goals and tasks these systems are to achieve become more abstract, and the environments they operate in become more complex, are current approaches to verification and validation sufficient? Domain Specific Modelling is a key technology for the verification of autonomous systems. Verifying these systems will ultimately involve understanding a significant number of domains. This includes goals/tasks, environments, systems functions and their associated performance. Relational Model Transformations provide a means to utilise, combine and check models for consistency across these domains. In this thesis an approach that utilises relational model transformation technologies for systems verification, Systems MDD, is presented along with the results of a series of trials conducted with an existing relational model transformation language (QVT-Relations). These trials identified a number of problems with existing model transformation languages, including poorly or loosely defined semantics, differing interpretations of specifications across different tools and the lack of a guarantee that a model transformation would generate a model that was compliant with its associated meta-model. To address these problems, two related solvers were developed to assist with realising the Systems MDD approach. The first solver, MMCS, is concerned with partial model completion, where a partial model is defined as a model that does not fully conform with its associated meta-model. It identifies appropriate modifications to be made to a partial model in order to bring it into full compliance. The second solver, TMPT, is a relational model transformation engine that prioritises target models. It considers multiple interpretations of a relational transformation specification, chooses an interpretation that results in a compliant target model (if one exists) and, optionally, maximises some other attribute associated with the model. A series of experiments were conducted that applied this to common transformation problems in the published literature
    corecore