4 research outputs found

    Forecasting obsolescence risk and product lifecycle with machine learning

    Get PDF
    Rapid changes in technology have led to an increasingly fast pace of product introductions. New components offering added functionality, improved performance and quality are routinely available to a growing number of industry sectors (e.g., electronics, automotive, and defense industries). For long-life systems such as planes, ships, nuclear power plants, and more, these rapid changes help sustain the useful life, but at the same time, present significant challenges associated with managing change. Obsolescence of components and/or subsystems can be technical, functional, related to style, etc., and occur in nearly any industry. Over the years, many approaches for forecasting obsolescence have been developed. Inputs to such methods have been based on manual inputs and best estimates from product planners, or have been based on market analysis of parts, components, or assemblies that have been identified as higher risk for obsolescence on bill of materials. Gathering inputs required for forecasting is often subjective and laborious, causing inconsistencies in predictions. To address this issue, the objective of this research is to develop a new framework and methodology capable of identifying and forecasting obsolescence with a high degree of accuracy while minimizing maintenance and upkeep. To accomplish this objective, current obsolescence forecasting methods were categorized by output type and assessed in terms of pros and cons. A machine learning methodology capable of predicting obsolescence risk level and estimating the date of obsolescence was developed. The machine learning methodology is used to classify parts as active (in production) or obsolete (discontinued) and can be used during the design stage to guide part selection. Estimates of the date parts will cease production can be used to more efficiently time redesigns of multiple obsolete parts from a product or system. A case study of the cell phone market is presented to demonstrate how the methodology can forecast product obsolescence with a high degree of accuracy. For example, results of obsolescence forecasting in the case study predict parts as active or obsolete with a 98.3% accuracy and regularly predicts obsolescence dates within a few months

    Using Learning-based Filters to Detect Rule-based Filtering Obsolescence

    No full text
    For years, Caisse des Dépôts et Consignations has produced information filtering applications. To be operational, these applications require high filtering performances which are achieved by using rule-based filters. With this technique, an administrator has to tune a set of rules for each topic. However, filters become obsolescent over time. The decrease of their performances is due to diachronic polysemy of terms that involves a loss of precision and to diachronic polymorphism of concepts that involves a loss of recall. To help the administrator to maintain his filters, we have developed a method which automatically detects filtering obsolescence. It consists in making a learning-based control filter using a set of documents which have already been categorised as relevant or not relevant by the rule-based filter. The idea is to supervise this filter by processing a differential comparison of its outcomes with those of the control one. This method has many advantages. It is simple to implement since the training set used by the learning is supplied by the rule-based filter. Thus, both the making and the use of the control filter are fully automatic. With automatic detection of obsolescence, learning-based filtering finds a rich application which offers interesting prospects. 1

    Μηχανική Μάθηση στην Επεξεργασία Φυσικής Γλώσσας

    Get PDF
    Η διατριβή εξετάζει την χρήση τεχνικών μηχανικής μάθησης σε διάφορα στάδια της επεξεργασίας φυσικής γλώσσας, κυρίως για σκοπούς εξαγωγής πληροφορίας από κείμενα. Στόχος είναι τόσο η βελτίωση της προσαρμοστικότητας των συστημάτων εξαγωγής πληροφορίας σε νέες θεματικές περιοχές (ή ακόμα και γλώσσες), όσο και η επίτευξη καλύτερης απόδοσης χρησιμοποιώντας όσο το δυνατό λιγότερους πόρους (τόσο γλωσσικούς όσο και ανθρώπινους). Η διατριβή κινείται σε δύο κύριους άξονες: α) την έρευνα και αποτίμηση υπαρχόντων αλγορίθμων μηχανικής μάθησης κυρίως στα στάδια της προ-επεξεργασίας (όπως η αναγνώριση μερών του λόγου) και της αναγνώρισης ονομάτων οντοτήτων, και β) τη δημιουργία ενός νέου αλγορίθμου μηχανικής μάθησης και αποτίμησής του, τόσο σε συνθετικά δεδομένα, όσο και σε πραγματικά δεδομένα από το στάδιο της εξαγωγής σχέσεων μεταξύ ονομάτων οντοτήτων. Ο νέος αλγόριθμος μηχανικής μάθησης ανήκει στην κατηγορία της επαγωγικής εξαγωγής γραμματικών, και εξάγει γραμματικές ανεξάρτητες από τα συμφραζόμενα χρησιμοποιώντας μόνο θετικά παραδείγματα.This thesis examines the use of machine learning techniques in various tasks of natural language processing, mainly for the task of information extraction from texts. The objectives are the improvement of adaptability of information extraction systems to new thematic domains (or even languages), and the improvement of their performance using as fewer resources (either linguistic or human) as possible. This thesis has examined two main axes: a) the research and assessment of existing algorithms of machine learning mainly in the stages of linguistic pre-processing (such as part of speech tagging) and named-entity recognition, and b) the creation of a new machine learning algorithm and its assessment on synthetic data, as well as in real world data from the task of relation extraction between named entities. This new algorithm belongs to the category of inductive grammar learning, and can infer context free grammars from positive examples only
    corecore