3 research outputs found

    Malware in the Future? Forecasting of Analyst Detection of Cyber Events

    Full text link
    There have been extensive efforts in government, academia, and industry to anticipate, forecast, and mitigate cyber attacks. A common approach is time-series forecasting of cyber attacks based on data from network telescopes, honeypots, and automated intrusion detection/prevention systems. This research has uncovered key insights such as systematicity in cyber attacks. Here, we propose an alternate perspective of this problem by performing forecasting of attacks that are analyst-detected and -verified occurrences of malware. We call these instances of malware cyber event data. Specifically, our dataset was analyst-detected incidents from a large operational Computer Security Service Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on automated systems. Our data set consists of weekly counts of cyber events over approximately seven years. Since all cyber events were validated by analysts, our dataset is unlikely to have false positives which are often endemic in other sources of data. Further, the higher-quality data could be used for a number for resource allocation, estimation of security resources, and the development of effective risk-management strategies. We used a Bayesian State Space Model for forecasting and found that events one week ahead could be predicted. To quantify bursts, we used a Markov model. Our findings of systematicity in analyst-detected cyber attacks are consistent with previous work using other sources. The advanced information provided by a forecast may help with threat awareness by providing a probable value and range for future cyber events one week ahead. Other potential applications for cyber event forecasting include proactive allocation of resources and capabilities for cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa

    Using inetvis to evaluate snort and bro scan detection on a network telescope

    No full text
    This paper presents an investigative analysis of net-work scans and scan detection algorithms. Visualisa-tion is employed to review network telescope traffic and identify incidents of scan activity. Some of the identified phenomena appear to be novel forms of host discovery. Scan detection algorithms used by the Snort and Bro intrusion detection systems are cri-tiqued by comparing the visualised scans with alert output. Where human assessment disagrees with the alert output, explanations are sought by analysing the detection algorithms. The Snort and Bro algorithms are based on counting unique connection attempts to destination addresses and ports. For Snort, notable false positive and false negative cases result due to a grossly oversimplified method of counting unique destination addresses and ports

    Darknet as a Source of Cyber Threat Intelligence: Investigating Distributed and Reflection Denial of Service Attacks

    Get PDF
    Cyberspace has become a massive battlefield between computer criminals and computer security experts. In addition, large-scale cyber attacks have enormously matured and became capable to generate, in a prompt manner, significant interruptions and damage to Internet resources and infrastructure. Denial of Service (DoS) attacks are perhaps the most prominent and severe types of such large-scale cyber attacks. Furthermore, the existence of widely available encryption and anonymity techniques greatly increases the difficulty of the surveillance and investigation of cyber attacks. In this context, the availability of relevant cyber monitoring is of paramount importance. An effective approach to gather DoS cyber intelligence is to collect and analyze traffic destined to allocated, routable, yet unused Internet address space known as darknet. In this thesis, we leverage big darknet data to generate insights on various DoS events, namely, Distributed DoS (DDoS) and Distributed Reflection DoS (DRDoS) activities. First, we present a comprehensive survey of darknet. We primarily define and characterize darknet and indicate its alternative names. We further list other trap-based monitoring systems and compare them to darknet. In addition, we provide a taxonomy in relation to darknet technologies and identify research gaps that are related to three main darknet categories: deployment, traffic analysis, and visualization. Second, we characterize darknet data. Such information could generate indicators of cyber threat activity as well as provide in-depth understanding of the nature of its traffic. Particularly, we analyze darknet packets distribution, its used transport, network and application layer protocols and pinpoint its resolved domain names. Furthermore, we identify its IP classes and destination ports as well as geo-locate its source countries. We further investigate darknet-triggered threats. The aim is to explore darknet inferred threats and categorize their severities. Finally, we contribute by exploring the inter-correlation of such threats, by applying association rule mining techniques, to build threat association rules. Specifically, we generate clusters of threats that co-occur targeting a specific victim. Third, we propose a DDoS inference and forecasting model that aims at providing insights to organizations, security operators and emergency response teams during and after a DDoS attack. Specifically, this work strives to predict, within minutes, the attacks’ features, namely, intensity/rate (packets/sec) and size (estimated number of compromised machines/bots). The goal is to understand the future short-term trend of the ongoing DDoS attacks in terms of those features and thus provide the capability to recognize the current as well as future similar situations and hence appropriately respond to the threat. Further, our work aims at investigating DDoS campaigns by proposing a clustering approach to infer various victims targeted by the same campaign and predicting related features. To achieve our goal, our proposed approach leverages a number of time series and fluctuation analysis techniques, statistical methods and forecasting approaches. Fourth, we propose a novel approach to infer and characterize Internet-scale DRDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring DDoS activities using darknet, this work shows that we can extract DoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DRDoS activities such as intensity, rate and geographic location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks and the expectation maximization and k-means clustering techniques in an attempt to identify campaigns of DRDoS attacks. Finally, we conclude this work by providing some discussions and pinpointing some future work
    corecore