2,503 research outputs found

    Robust recognition and segmentation of human actions using HMMs with missing observations

    Get PDF
    This paper describes the integration of missing observation data with hidden Markov models to create a framework that is able to segment and classify individual actions from a stream of human motion using an incomplete 3D human pose estimation. Based on this framework, a model is trained to automatically segment and classify an activity sequence into its constituent subactions during inferencing. This is achieved by introducing action labels into the observation vector and setting these labels as missing data during inferencing, thus forcing the system to infer the probability of each action label. Additionally, missing data provides recognition-level support for occlusions and imperfect silhouette segmentation, permitting the use of a fast (real-time) pose estimation that delegates the burden of handling undetected limbs onto the action recognition system. Findings show that the use of missing data to segment activities is an accurate and elegant approach. Furthermore, action recognition can be accurate even when almost half of the pose feature data is missing due to occlusions, since not all of the pose data is important all of the time

    Action classification using a discriminative non-parametric hidden Markov model

    Get PDF
    We classify human actions occurring in videos, using the skeletal joint positions extracted from a depth image sequence as features. Each action class is represented by a non-parametric Hidden Markov Model (NP-HMM) and the model parameters are learnt in a discriminative way. Specifically, we use a Bayesian framework based on Hierarchical Dirichlet Process (HDP) to automatically infer the cardinality of hidden states and formulate a discriminative function based on distance between Gaussian distributions to improve classification performance. We use elliptical slice sampling to efficiently sample parameters from the complex posterior distribution induced by our discriminative likelihood function. We illustrate our classification results for action class models trained using this technique

    Naturalistic Affective Expression Classification by a Multi-Stage Approach Based on Hidden Markov Models

    Get PDF
    In naturalistic behaviour, the affective states of a person change at a rate much slower than the typical rate at which video or audio is recorded (e.g. 25fps for video). Hence, there is a high probability that consecutive recorded instants of expressions represent a same affective content. In this paper, a multi-stage automatic affective expression recognition system is proposed which uses Hidden Markov Models (HMMs) to take into account this temporal relationship and finalize the classification process. The hidden states of the HMMs are associated with the levels of affective dimensions to convert the classification problem into a best path finding problem in HMM. The system was tested on the audio data of the Audio/Visual Emotion Challenge (AVEC) datasets showing performance significantly above that of a one-stage classification system that does not take into account the temporal relationship, as well as above the baseline set provided by this Challenge. Due to the generality of the approach, this system could be applied to other types of affective modalities

    An audio-based sports video segmentation and event detection algorithm

    Get PDF
    In this paper, we present an audio-based event detection algorithm shown to be effective when applied to Soccer video. The main benefit of this approach is the ability to recognise patterns that display high levels of crowd response correlated to key events. The soundtrack from a Soccer sequence is first parameterised using Mel-frequency Cepstral coefficients. It is then segmented into homogenous components using a windowing algorithm with a decision process based on Bayesian model selection. This decision process eliminated the need for defining a heuristic set of rules for segmentation. Each audio segment is then labelled using a series of Hidden Markov model (HMM) classifiers, each a representation of one of 6 predefined semantic content classes found in Soccer video. Exciting events are identified as those segments belonging to a crowd cheering class. Experimentation indicated that the algorithm was more effective for classifying crowd response when compared to traditional model-based segmentation and classification techniques
    corecore