7 research outputs found

    Development of underground mine monitoring and communication system integrated ZigBee and GIS

    Get PDF
    An automated underground mine monitoring and communication system based on the integration of new technologies is introduced to promote safety and health, operational management and cost-effectiveness. The proposed system integration considering wireless sensor network (WSN) assisted geographic information system (GIS) enables to monitor and control underground mining applications from surface office. Based on the capabilities of WSNs, ZigBee network is adapted for near real-time monitoring, ventilation system control and emergency communication in underground mine. ZigBee nodes were developed to sense environmental attributes such as temperature, humidity and gases concentration; switching ON and OFF ventilation fans; and texting emergency messages. A trigger action plan for monitored attributes above normal and threshold value limits is programmed in the surface GIS management server. It is designed to turn the auxiliary fans on remotely or automatically in orange condition and sending evacuation messages for underground miners in unsafe (red) condition. Multi-users operation and 3D visualizations are other successful achievements of the proposed system for the underground monitoring and communication

    A multimedia data visualization based on Ad Hoc communication networks and its application to disaster management

    Get PDF
    After massive earthquakes and other large-scale disasters, existing communication infrastructure may become unavailable and, therefore, it can be quite difficult for relief organizations to fully grasp the impact of the disaster on the affected region. Consequently, this will be the cause of delays to offer the strategic assistance, and to provide water and food, etc. In order to solve the problem of re-establishing communication infrastructure to allow for information gathering, we developed an ad hoc mobile communications network for disaster-struck areas using ZigBee. As the communication speed of ZigBee is low, we propose a problem-specific image compression method for the multimedia data visualization. By using the proposed method combined with GPS information, it is possible to quickly grasp the damage situation in the region. Through our communication experiments in Tsukuba City, Japan we confirm the effectiveness of our system as a disaster information gathering and management system

    Geopackage as future ubiquitous GIS data format: a review

    Get PDF
    The emerging geospatial technologies in earth and space science informatics have led to the advancement in developing international standards for geospatial interoperability. In the last few years, two main trends are making disruptions in geospatial applications; mobile and context sharing. Geospatial data format used in mobile GIS to support advance mobile application is challenged. This is due to the lack of interoperability, open-standard, cross platform and standard APIs for access and management. For instance, most mobile GIS developments are application-dependent, contains redundant geospatial data, consume large storage capacity, and require custom applications for data translation. Based on these issues, new OGC file format named GeoPackage will enable greater geospatial data sharing on mobile and web platform. This data format is an open standard, non-proprietary, platform-independent, container for distribution, and direct use of all kinds of geospatial data will increase cross-platform interoperability, geospatial applications and web services. This presents a comprehensive review of mobile GIS hence, the concept of GeoPackage as a modern geospatial tool was discussed, while its relevance in contemporary geospatial technology are highlighted

    Using GIS to develop a mobile communications network for disaster-damaged areas

    No full text
    Communications network damage resulting from a large disaster causes difficulties in the ability to rapidly understand the current situation and thus make appropriate decisions towards mitigating problems, such as where to send and dispense emergency supplies. The research outlined in this paper focuses on the rapid construction of a network after a disaster occurs. This study suggests ZigBee and geographic information systems (GIS) technologies to resolve these problems and provide an effective communication system. The experimental results of the ZigBee network system are presented, examples are provided of the mapping and analysis undertaken using GIS for the disaster-stricken area of Tsukuba City, Japan, and the communications node arrangements are determined for this region. These results demonstrate the effectiveness of establishing such a communications system for supporting efforts to relieve disaster-damaged areas

    Underground Mining Monitoring and Communication Systems based on ZigBee and GIS

    Get PDF
    ZigBee as a wireless sensor network (WSN) was developed for underground mine monitoring and communication systems. The radio wave attenuations between ZigBee nodes were investigated to measure underground communication distances. Various sensor node arrangements of ZigBee topologies were evaluated. A system integration of a WSN-assisted GIS for underground mining monitoring and communication from a surface office was proposed. The controllable and uncontrollable parameters of underground environments were assessed to establish a reliable ZigBee network

    筑波大学計算科学研究センター 平成25年度 年次報告書

    Get PDF
    1 平成25 年度重点施策および改善目標の達成状況 ...... 22 自己評価と課題 ...... 83 各研究部門の報告 ...... 10I. 素粒子物理研究部門 ...... 10II. 宇宙・原子核物理研究部門 ...... 32II-1. 宇宙物理理論グループ ...... 32II-2. 原子核分野 ...... 56III. 量子物性研究部門 ...... 69IV. 生命科学研究部門 ...... 83IV-1. 生命機能情報分野 ...... 83IV-2. 分子進化分野 ...... 93V. 地球環境研究部門 ....... 104VI. 高性能計算システム研究部門 ...... 118VII. 計算情報学研究部門 ...... 148VII-1. データ基盤分野 ...... 148VII-2. 計算メディア分野 ...... 16
    corecore