1,028 research outputs found

    NASARI: a novel approach to a Semantically-Aware Representation of items

    Get PDF
    The semantic representation of individual word senses and concepts is of fundamental importance to several applications in Natural Language Processing. To date, concept modeling techniques have in the main based their representation either on lexicographic resources, such as WordNet, or on encyclopedic resources, such as Wikipedia. We propose a vector representation technique that combines the complementary knowledge of both these types of resource. Thanks to its use of explicit semantics combined with a novel cluster-based dimensionality reduction and an effective weighting scheme, our representation attains state-of-the-art performance on multiple datasets in two standard benchmarks: word similarity and sense clustering. We are releasing our vector representations at http://lcl.uniroma1.it/nasari/

    Distant Supervision for Entity Linking

    Full text link
    Entity linking is an indispensable operation of populating knowledge repositories for information extraction. It studies on aligning a textual entity mention to its corresponding disambiguated entry in a knowledge repository. In this paper, we propose a new paradigm named distantly supervised entity linking (DSEL), in the sense that the disambiguated entities that belong to a huge knowledge repository (Freebase) are automatically aligned to the corresponding descriptive webpages (Wiki pages). In this way, a large scale of weakly labeled data can be generated without manual annotation and fed to a classifier for linking more newly discovered entities. Compared with traditional paradigms based on solo knowledge base, DSEL benefits more via jointly leveraging the respective advantages of Freebase and Wikipedia. Specifically, the proposed paradigm facilitates bridging the disambiguated labels (Freebase) of entities and their textual descriptions (Wikipedia) for Web-scale entities. Experiments conducted on a dataset of 140,000 items and 60,000 features achieve a baseline F1-measure of 0.517. Furthermore, we analyze the feature performance and improve the F1-measure to 0.545

    Neural Cross-Lingual Entity Linking

    Full text link
    A major challenge in Entity Linking (EL) is making effective use of contextual information to disambiguate mentions to Wikipedia that might refer to different entities in different contexts. The problem exacerbates with cross-lingual EL which involves linking mentions written in non-English documents to entries in the English Wikipedia: to compare textual clues across languages we need to compute similarity between textual fragments across languages. In this paper, we propose a neural EL model that trains fine-grained similarities and dissimilarities between the query and candidate document from multiple perspectives, combined with convolution and tensor networks. Further, we show that this English-trained system can be applied, in zero-shot learning, to other languages by making surprisingly effective use of multi-lingual embeddings. The proposed system has strong empirical evidence yielding state-of-the-art results in English as well as cross-lingual: Spanish and Chinese TAC 2015 datasets.Comment: Association for the Advancement of Artificial Intelligence (AAAI), 201

    An effective, low-cost measure of semantic relatedness obtained from Wikipedia links

    Get PDF
    This paper describes a new technique for obtaining measures of semantic relatedness. Like other recent approaches, it uses Wikipedia to provide structured world knowledge about the terms of interest. Out approach is unique in that it does so using the hyperlink structure of Wikipedia rather than its category hierarchy or textual content. Evaluation with manually defined measures of semantic relatedness reveals this to be an effective compromise between the ease of computation of the former approach and the accuracy of the latter

    WikiM: Metapaths based Wikification of Scientific Abstracts

    Full text link
    In order to disseminate the exponential extent of knowledge being produced in the form of scientific publications, it would be best to design mechanisms that connect it with already existing rich repository of concepts -- the Wikipedia. Not only does it make scientific reading simple and easy (by connecting the involved concepts used in the scientific articles to their Wikipedia explanations) but also improves the overall quality of the article. In this paper, we present a novel metapath based method, WikiM, to efficiently wikify scientific abstracts -- a topic that has been rarely investigated in the literature. One of the prime motivations for this work comes from the observation that, wikified abstracts of scientific documents help a reader to decide better, in comparison to the plain abstracts, whether (s)he would be interested to read the full article. We perform mention extraction mostly through traditional tf-idf measures coupled with a set of smart filters. The entity linking heavily leverages on the rich citation and author publication networks. Our observation is that various metapaths defined over these networks can significantly enhance the overall performance of the system. For mention extraction and entity linking, we outperform most of the competing state-of-the-art techniques by a large margin arriving at precision values of 72.42% and 73.8% respectively over a dataset from the ACL Anthology Network. In order to establish the robustness of our scheme, we wikify three other datasets and get precision values of 63.41%-94.03% and 67.67%-73.29% respectively for the mention extraction and the entity linking phase
    corecore