3 research outputs found

    Simulation of a Clustering Scheme for Vehicular Ad Hoc Networks Using a DEVS-based Virtual Laboratory Environment

    Get PDF
    ANT 2018, The 9th International Conference on Ambient Systems, Networks and Technologies, Porto, PORTUGAL, 08-/05/2018 - 11/05/2018Protocol design is usually based on the functional models developed according to the needs of the system. In Intelligent Transport Systems (ITS), the features studied regarding Vehicular Ad hoc Networks (VANET) include self-organizing, routing, reliability, quality of service, and security. Simulation studies on ITS-dedicated routing protocols usually focus on their performance in specific scenarios. However, the evolution of transportation systems towards autonomous vehicles requires robust protocols with proven or at least guaranteed properties. Though formal approaches provide powerful tools for system design, they cannot be used for every types of ITS components. Our goal is to develop new tools combining formal tools such as Event-B with DEVS-based (Discrete Event System Specification) virtual laboratories in order to design the models of ITS components which simulation would allow proving and verifying their properties in large-scale scenarios. This paper presents the models of the different components of a VANET realized with the Virtual Laboratory Environment (VLE). We point out the component models fitting to formal modeling, and proceed to the validation of all designed models through a simulation scenario based on real-world road traffic data

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    Using DEv-PROMELA for Modelling and Verification of Software

    No full text
    International audienceno abstrac
    corecore