3,642 research outputs found

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio

    Ensemble multiboost based on ripper classifier for prediction of imbalanced software defect data

    Get PDF
    Identifying defective software entities is essential to ensure software quality during software development. However, the high dimensionality and class distribution imbalance of software defect data seriously affect software defect prediction performance. In order to solve this problem, this paper proposes an Ensemble MultiBoost based on RIPPER classifier for prediction of imbalanced Software Defect data, called EMR_SD. Firstly, the algorithm uses principal component analysis (PCA) method to find out the most effective features from the original features of the data set, so as to achieve the purpose of dimensionality reduction and redundancy removal. Furthermore, the combined sampling method of adaptive synthetic sampling (ADASYN) and random sampling without replacement is performed to solve the problem of data class imbalance. This classifier establishes association rules based on attributes and classes, using MultiBoost to reduce deviation and variance, so as to achieve the purpose of reducing classification error. The proposed prediction model is evaluated experimentally on the NASA MDP public datasets and compared with existing similar algorithms. The results show that EMR-SD algorithm is superior to DNC, CEL and other defect prediction techniques in most evaluation indicators, which proves the effectiveness of the algorithm

    Analyze the Performance of Software by Machine Learning Methods for Fault Prediction Techniques

    Get PDF
    Trend of using the software in daily life is increasing day by day. Software system development is growing more difficult as these technologies are integrated into daily life. Therefore, creating highly effective software is a significant difficulty. The quality of any software system continues to be the most important element among all the required characteristics. Nearly one-third of the total cost of software development goes toward testing. Therefore, it is always advantageous to find a software bug early in the software development process because if it is not found early, it will drive up the cost of the software development. This type of issue is intended to be resolved via software fault prediction. There is always a need for a better and enhanced prediction model in order to forecast the fault before the real testing and so reduce the flaws in the time and expense of software projects. The various machine learning techniques for classifying software bugs are discussed in this paper

    Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions

    Get PDF
    Software testing identifies defects in software products with varying multiplying effects based on their severity levels and sequel to instant rectifications, hence the rate of a research study in the software engineering domain. In this paper, a systematic literature review (SLR) on machine learning-based software defect severity prediction was conducted in the last decade. The SLR was aimed at detecting germane areas central to efficient predictive analytics, which are seldom captured in existing software defect severity prediction reviews. The germane areas include the analysis of techniques or approaches which have a significant influence on the threats to the validity of proposed models, and the bias-variance tradeoff considerations techniques in data science-based approaches. A population, intervention, and outcome model is adopted for better search terms during the literature selection process, and subsequent quality assurance scrutiny yielded fifty-two primary studies. A subsequent thoroughbred systematic review was conducted on the final selected studies to answer eleven main research questions, which uncovers approaches that speak to the aforementioned germane areas of interest. The results indicate that while the machine learning approach is ubiquitous for predicting software defect severity, germane techniques central to better predictive analytics are infrequent in literature. This study is concluded by summarizing prominent study trends in a mind map to stimulate future research in the software engineering industry.publishedVersio
    • …
    corecore