481 research outputs found

    MARINE: Man-in-the-middle attack resistant trust model IN connEcted vehicles

    Get PDF
    Vehicular Ad-hoc NETwork (VANET), a novel technology holds a paramount importance within the transportation domain due to its abilities to increase traffic efficiency and safety. Connected vehicles propagate sensitive information which must be shared with the neighbors in a secure environment. However, VANET may also include dishonest nodes such as Man-in-the-Middle (MiTM) attackers aiming to distribute and share malicious content with the vehicles, thus polluting the network with compromised information. In this regard, establishing trust among connected vehicles can increase security as every participating vehicle will generate and propagate authentic, accurate and trusted content within the network. In this paper, we propose a novel trust model, namely, Man-in-the-middle Attack Resistance trust model IN connEcted vehicles (MARINE), which identifies dishonest nodes performing MiTM attacks in an efficient way as well as revokes their credentials. Every node running MARINE system first establishes trust for the sender by performing multi-dimensional plausibility checks. Once the receiver verifies the trustworthiness of the sender, the received data is then evaluated both directly and indirectly. Extensive simulations are carried out to evaluate the performance and accuracy of MARINE rigorously across three MiTM attacker models and the bench-marked trust model. Simulation results show that for a network containing 35% MiTM attackers, MARINE outperforms the state of the art trust model by 15%, 18%, and 17% improvements in precision, recall and F-score, respectively.N/A

    Erkennung und Vermeidung von Fehlverhalten in fahrzeugbasierten DTNs

    Get PDF
    Delay- and Disruption-Tolerant Networks (DTNs) are a suitable technology for many applications when the network suffers from intermittent connections and significant delays. In current vehicular networks, due to the high mobility of vehicles, the connectivity in vehicular networks can be highly unstable, links may change or break soon after they have been established and the network topology varies significantly depending on time and location. When the density of networked vehicles is low, connectivity is intermittent and with only a few transmission opportunities. This makes forwarding packets very difficult. For the next years, until a high penetration of networked vehicles is realized, delay-tolerant methods are a necessity in vehicular networks, leading to Vehicular DTNs (VDTNs). By implementing a store-carry-forward paradigm, VDTNs can make sure that even under difficult conditions, the network can be used by applications. However, we cannot assume that all vehicles are altruistic in VDTNs. Attackers can penetrate the communication systems of vehicles trying their best to destroy the network. Especially if multiple attackers collude to disrupt the network, the characteristics of VDTNs, without continuous connectivity, make most traditional strategies of detecting attackers infeasible. Additionally, selfish nodes may be reluctant to cooperate considering their profit, and due to hard- or software errors some vehicles cannot send or forward data. Hence, efficient mechanisms to detect malicious nodes in VDTNs are imperative. In this thesis, two classes of Misbehavior Detection Systems (MDSs) are proposed to defend VDTNs against malicious nodes. Both MDSs use encounter records (ERs) as proof to document nodes' behavior during previous contacts. By collecting and securely exchanging ERs, depending on different strategies in different classes of MDSs, a reputation system is built in order to punish bad behavior while encouraging cooperative behavior in the network. With independently operating nodes and asynchronous exchange of observations through ERs, both systems are very well suited for VDTNs, where there will be no continuous, ubiquitous network in the foreseeable future. By evaluating our methods through extensive simulations using different DTN routing protocols and different realistic scenarios, we find that both MDS classes are able to efficiently protect the system with low overhead and prevent malicious nodes from further disrupting the network.In Netzwerken mit zeitweisen Unterbrechungen oder langen Verzögerungen sind Delay- and Disruption-Tolerant Networks (DTNs) eine geeignete Technologie für viele Anwendungen. Die Konnektivität in Fahrzeugnetzen ist bedingt durch die hohe Mobilität und die geringe Verbreitung von netzwerkfähigen Fahrzeugen oft instabil. Bis zur flächendeckenden Verbreitung von netzwerkfähigen Fahrzeugen ist es daher zwingend notwendig auf Methoden des Delay Tolerant Networking zurückzugreifen um die bestmögliche Kommunikation zu gewährleisten. In diesem Zusammenhang wird von Vehicular Delay Tolerant Networks (VDTNs) gesprochen. Durch das Store-Carry-Forward-Prinzip kann ein VDTN Kommunikation für Anwendungen ermöglichen. Allerdings ist davon auszugehen, dass sich nicht alle Fahrzeuge altruistisch verhalten: Angreifer können Fahrzeuge übernehmen und das Netzwerk attackieren oder Knoten sind aus egoistischen Motiven oder auf Grund von Defekten unkooperativ. Verfahren, die Fehlverhalten in stabilen Netzen durch direkte Beobachtung erkennen können, sind in VDTNs nicht anwendbar. Daher sind Methoden, die Fehlverhalten in VDTNs nachweisen können, zwingend erforderlich. In dieser Arbeit werden zwei Klassen von Misbehavior Detection Systems (MDSs) vorgestellt. Beide Systeme basieren auf Encounter Records (ERs): Nach einem Kontakt tauschen zwei Knoten kryptografisch signierte Meta-Informationen zu den erfolgten Datentransfers aus. Diese ERs dienen bei darauffolgenden Kontakten mit anderen Netzwerkteilnehmern als vertrauenswürdiger Nachweis für das Verhalten eines Knotens in der Vergangenheit. Basierend auf der Auswertung gesammelter ERs wird ein Reputationssystem entwickelt, das kooperatives Verhalten belohnt und unkooperatives Verhalten bestraft. Dauerhaft unkooperative Knoten werden aus dem Netzwerk ausgeschlossen. Durch den asynchronen Austausch von Informationen kann jeder Knoten das Verhalten seiner Nachbarn selbstständig und unabhängig evaluieren. Dadurch sind die vorgestellten MDS-Varianten sehr gut für den Einsatz in einem VDTN geeignet. Durch umfangreiche Evaluationen wird gezeigt, dass sich die entwickelten MDS-Verfahren für verschiedene Routingprotokolle und in unterschiedlichen Szenarien anwenden lassen. In allen Fällen ist das MDS in der Lage das System mit geringem Overhead gegen Angreifer zu verteidigen und eine hohe Servicequalität im Netzwerk zu gewährleisten

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented

    State-of-the-art authentication and verification schemes in VANETs:A survey

    Get PDF
    Vehicular Ad-Hoc Networks (VANETs), a subset of Mobile Ad-Hoc Networks (MANETs), are wireless networks formed around moving vehicles, enabling communication between vehicles, roadside infrastructure, and servers. With the rise of autonomous and connected vehicles, security concerns surrounding VANETs have grown. VANETs still face challenges related to privacy with full-scale deployment due to a lack of user trust. Critical factors shaping VANETs include their dynamic topology and high mobility characteristics. Authentication protocols emerge as the cornerstone of enabling the secure transmission of entities within a VANET. Despite concerted efforts, there remains a need to incorporate verification approaches for refining authentication protocols. Formal verification constitutes a mathematical approach enabling developers to validate protocols and rectify design errors with precision. Therefore, this review focuses on authentication protocols as a pivotal element for securing entity transmission within VANETs. It presents a comparative analysis of existing protocols, identifies research gaps, and introduces a novel framework that incorporates formal verification and threat modeling. The review considers key factors influencing security, sheds light on ongoing challenges, and emphasises the significance of user trust. The proposed framework not only enhances VANET security but also contributes to the growing field of formal verification in the automotive domain. As the outcomes of this study, several research gaps, challenges, and future research directions are identified. These insights would offer valuable guidance for researchers to establish secure authentication communication within VANETs

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral
    corecore