2,656 research outputs found

    What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification

    Full text link
    Matching pedestrians across disjoint camera views, known as person re-identification (re-id), is a challenging problem that is of importance to visual recognition and surveillance. Most existing methods exploit local regions within spatial manipulation to perform matching in local correspondence. However, they essentially extract \emph{fixed} representations from pre-divided regions for each image and perform matching based on the extracted representation subsequently. For models in this pipeline, local finer patterns that are crucial to distinguish positive pairs from negative ones cannot be captured, and thus making them underperformed. In this paper, we propose a novel deep multiplicative integration gating function, which answers the question of \emph{what-and-where to match} for effective person re-id. To address \emph{what} to match, our deep network emphasizes common local patterns by learning joint representations in a multiplicative way. The network comprises two Convolutional Neural Networks (CNNs) to extract convolutional activations, and generates relevant descriptors for pedestrian matching. This thus, leads to flexible representations for pair-wise images. To address \emph{where} to match, we combat the spatial misalignment by performing spatially recurrent pooling via a four-directional recurrent neural network to impose spatial dependency over all positions with respect to the entire image. The proposed network is designed to be end-to-end trainable to characterize local pairwise feature interactions in a spatially aligned manner. To demonstrate the superiority of our method, extensive experiments are conducted over three benchmark data sets: VIPeR, CUHK03 and Market-1501.Comment: Published at Pattern Recognition, Elsevie

    Exact Symmetries realized on the Renormalized Group Flow

    Full text link
    We show that symmetries are preserved exactly along the (Wilsonian) renormalization group flow, though the IR cutoff deforms concrete forms of the transformations. For a gauge theory the cutoff dependent Ward-Takahashi identity is written as the master equation in the antifield formalism: one may read off the renormalized BRS transformation from the master equation. The Maxwell theory is studied explicitly to see how it works. The renormalized BRS transformation becomes non-local but keeps off-shell nilpotency. Our formalism is applicable for a generic global symmetry. The master equation considered for the chiral symmetry provides us with the continuum analog of the Ginsparg-Wilson relation and the L{\" u}scher's symmetry.Comment: Latex, 10 page
    corecore