3 research outputs found

    A New Exposed-terminal-free MAC Protocol for Multi-hop Wireless Networks

    Get PDF
    AbstractThis article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-to-send (RTS/CTS) dialogue on a common channel and flexibly opts for conflict-free traffic channels to carry out the data packet transmission on the basis of a new channel selection scheme. The acknowledgment (ACK) packet for the data packet transmission is sent back to the sender over another common channel thus completely eliminating the exposed-terminal effects. Any adjacent communication pair can take full advantage of multiple traffic channels without collision and the spatial reuse of the same channel is extended to other communication pairs which are even within 2 hops from them. In addition, the hidden-terminal effect is also considerably reduced because most of possible packet collisions on a single channel are avoided due to traffic load balance on multichannels. Finally, a performance comparison is made between the proposed protocol and other typical MAC protocols. Simulation results evidence its obvious superiority to the MAC protocols associated with other channel selection schemes and traditional ACK transmission scheme as well as cooperative asynchronous multichannel MAC (CAM-MAC) protocol in terms of four performance indices: total channel utilization, average channel utilization, average packet delay, and packet dropping rate

    On Design, Evaluation and Enhancement of IP-Based Routing Solutions for Low Power and Lossy Networks

    Get PDF
    In early 2008, a new IETF Working Group (WG), namely ROLL, was chartered to investigate the suitability of existing IP routing protocols for Low Power Lossy Networks (LLNs), which at the time were suffering compatibility issues due to the pervasive use of proprietary protocols. Given the vision of the Internet of Things (IoT) and the role LLNs would play in the future Internet, the IETF set out to standardize an IPv6 based routing solution for such networks. After surveying existing protocols and determining their unsuitability, the WG started designing a new distance vector protocol called RPL (recently standardized in IETF RFC 6550) to fulfill their charter. Joining the WG efforts, we developed a very detailed RPL simulator and using link and traffic traces for existing networks, contributed with a performance study of the protocol with respect to several metrics of interest, such as path quality, end-to-end delay, control plane overhead, ability to cope with instability, etc. This work was standardized as IETF Informational RFC 6687.This detailed study uncovered performance issues for networks of very large scale. In this thesis, we provide an overview of RPL, summarize our findings from the performance study, analysis and comparison with a reactive lightweight protocol and suggest modifications to the protocol that yield significant performance improvements with respect to control overhead and memory consumption in very large scale networks. For future work, we propose a routing technique, named Hybrid Intelligent Path Computation (HIPC), along with modifications to the original RPL protocol standard, that outperforms solely distributed or centralized routing techniques. Finally, we also show how one can facilitate Quality of Service (QoS), load balancing and traffic engineering provision in the IoT without incurring any extra control overhead in number of packets other than that already consumed by the proposed IETF standard, using a combination of centralized and distributed computation.Ph.D., Computer Science -- Drexel University, 201
    corecore