
On Design, Evaluation and

Enhancement of IP-Based Routing

Solutions for Low Power and

Lossy Networks

Joydeep Tripathi

Electrical & Computer Engineering Dept

Drexel University

Advisor: Jaudelice C. de Oliveira

Thesis submitted for the partial fulfillment for the degree of

PhilosophiæDoctor (PhD)

2014 June

mailto:joydeep.tripathi@gmail.com
http://www.ece.drexel.edu
http://www.drexel.edu
mailto:jau@coe.drexel.edu

ii

This thesis is dedicated to

To My parents, Bidyanath and Anindita Tripathi for their love and

unconditional support,

To my sisters, Rinku and Mou for their encouragement,

To my wife, Priyanka for all her love and patience,

And to my thesis advisor, Dr. Jaudelice C. de Oliveira for her vision,

encouragement, support and guidance.

Acknowledgements

My education at Drexel University has been a journey to remember, and I can not

thank enough to the number of people who contributed to the culmination of my degree

in so many ways.

First, I would like to thank my advisor, Dr. Jaudelice C. de Oliveira, who has been

more than a guide to me in this foreign country - a guardian, and a friend. At the same

time, I would like to express my gratitude towards Dr. Jean-Philippe Vasseur, who has

been our collaborator at Cisco Systems. They have continuously mentored through the

ups and downs, and taught me how to apply theoretical knowledge in real-life perspective.

They have provided me with the vision that would undoubtedly help me to make a better

decision, always.

I am highly grateful to my committee chair, Dr. Steven Weber for his priceless inputs

to my works, for the group discussions, and for the fact, that his suggestion improved the

quality of this thesis. I thank Dr. Nagarajan Kandasamy and Dr. Spiros Mancoridis for

their valuable comments and suggestions. To be honest, no word should be enough to

thank the committee member that I luckily had the privilege to work under. I feel lucky

that Drexel University has provided me with the opportunity to interact with the best

professors I ever came across. I can not thank enough Dr. Harish Sethu for the enormous

insight he provided through his classroom lectures. Dr. John Walsh, from whom I learned

how to bring enthusiasm into teaching what can be considered most difficult of subjects.

I thank the terrific staffs at the ECE department office to make my life so much

easier. I can not imagine how I would survive without the assistance of Chad Morris,

Tanita Chapelle, Kathy Bryant, Phyllis D. Watson, Taif Choudhury and Wayne Hill. I

will always remember the greatest of friends and sharpest of minds I have came across as

my lab members - Sukrit Dasgupta, Zhen Zhao, Anbu Elancheziyan, Fei Bao and Peter

Thai. I would miss all the technical and non-technical discussions I had with them, over

the blackboard or over a glass of drink.

Last but never the least, I would like to thank my whole family for this achievement.

If not for my parents, I could never be the person I am today, academically or personally.

I would thank them and my sisters for their continuous support and encouragement in

toughest of times. Finally, I acknowledge the support I have received from my wife,

Priyanka and thank her for her patience during my long journey of doctoral studies.

Contents

List of Figures ix

List of Tables xiii

Glossary xv

1 Introduction 1

1.1 Introduction to LLNs: Low-Power Lossy Networks 1

1.2 From Proprietary WSN Solutions to Standardization 4

1.2.1 Using application gateways . 6

1.2.2 Using standard protocol suits . 6

1.3 Unique Routing Challenges in LLNs . 8

1.3.1 Urban LLN routing requirements . 9

1.3.2 Industrial automation routing requirements 10

1.3.3 Home automation routing requirements 12

1.3.4 Building automation routing requirements 13

1.4 Contributions of This Thesis . 14

2 RPL: Routing Protocol for LLNs 17

2.1 Overview of RPL . 17

2.1.1 RPL - Forming and maintaining the DAG 18

2.1.2 RPL - Routing through the DAG . 21

2.2 Summary . 22

3 RPL: Performance Evaluation 23

3.1 Methodology and Simulation Setup . 24

3.1.1 Common assumptions . 28

3.2 Performance Evaluation in Small Network 28

3.2.1 Path quality . 28

CONTENTS vi

3.2.2 Routing table size . 32

3.2.3 Delay bound for P2P routing . 34

3.2.4 Control packet overhead . 35

3.2.5 Loss of connectivity . 39

3.3 RPL in a Building Automation Routing Scenario 44

3.3.1 Path quality . 46

3.3.2 Delay . 48

3.4 RPL in a Large-Scale Network . 51

3.4.1 Path quality . 51

3.4.2 Delay . 54

3.4.3 Control packet overhead . 55

3.5 Scaling Property, Parameter Configuration and Routing Stability 57

3.6 Summary . 63

4 Proactive versus Reactive in LLNs 66

4.1 LOADng: LLN On-demand Ad-hoc Distance Vector Routing Protocol -

Next Generation . 71

4.2 Theoretical Comparison: A Balanced Aggregation/ Dissemination Tree

Model . 73

4.3 Simulation Setup . 79

4.3.1 Traffic traces . 79

4.3.2 RPL and LOADng parameters . 80

4.4 Performance Results for Smart Grid Traffic 80

4.4.1 Control overhead and ability to support P2MP or MP2P traffic . . 81

4.4.2 Dependency of control overhead on application module 87

4.4.3 Path quality . 89

4.4.4 High end-to-end delay . 90

4.4.5 Impact on memory requirements . 95

4.4.6 Qualitative comparative analysis . 97

4.4.6.1 Flooding issues in LLNs . 97

4.4.6.2 Impact of flooding in battery operated nodes 98

4.4.6.3 Lack of support for routing based on node capability . . . 99

4.5 Performance Results for P2P Communication 100

4.5.1 Path quality . 100

4.5.2 End-to-end delay . 102

CONTENTS vii

4.5.3 Memory requirements . 102

4.5.4 Packet length . 104

4.6 Scaling Properties . 105

4.7 Summary . 109

5 RPL: Control Plane Congestion Mitigation in Non-Storing Mode 111

5.1 DAO Specific Operation in RPL: Motivation for Optimization 112

5.1.1 Trade-off on designing the value of DelayDAO Timer 113

5.1.2 Bottleneck due to a constant value of DelayDAO Timer 114

5.2 Determining DelayDAO - A Distributed Algorithm 117

5.3 Determining DelayDAO - Centralized Approach 119

5.4 Evaluation of the Algorithms . 120

5.4.1 Simulation setup and metrics . 120

5.4.2 Simulation results . 122

5.5 DelayDAO Controller - A Combined Algorithm Proposal to Improve RPL’s

Performance . 128

5.5.1 Routine followed at LBR or collection point 130

5.5.2 Routine followed at nodes other than LBR 130

5.5.3 Evaluation of proposed approach . 133

5.6 Summary . 137

6 RPL: DAO Propagation in Storing Mode 138

6.1 DAO Aggregation and Delay Method in Storing Method 138

6.1.1 Aggregated DAO packet format . 139

6.1.2 DAO aggregation algorithm . 141

6.2 RPL Storing Mode Evaluation . 142

6.3 Summary . 145

7 Evolution of RPL: Towards Load Balanced LLNs 147

7.1 Related Work . 148

7.2 A Metric to Define Load Imbalance . 150

7.2.1 Example of balanced collection tree 150

7.2.2 Imbalance factor . 151

7.3 How Hard Is It to Minimize Imbalance? . 153

7.4 Implementation of Load Balancing in LLNs 154

7.4.1 Runtime analysis of proposed method 156

CONTENTS viii

7.5 Evaluation . 157

7.5.1 Simulation results . 157

7.6 Summary . 163

8 Future Work - RPL Adaptation in IoT via HIPC 165

8.1 Function of Proposed Architecture . 166

8.2 Detailed HIPC Architecture . 168

8.2.1 Distributed Processor Modules (DPM) 169

8.2.2 Centralized Processor Modules (CPM) 171

8.3 Summary . 175

9 Conclusion and Future Directions 176

9.1 Summary of This Thesis . 176

9.2 Future Work Items . 178

9.3 Summary of Publications . 179

References 181

List of Figures

2.1 DIO propagation and DAG formation. 18

2.2 DAO propagation and route establishment. 20

2.3 Data routing in RPL non-storing mode. 21

2.4 Data routing in RPL storing mode. 21

3.1 Outdoor Network Topology with 45 Nodes. 25

3.2 Outdoor Network Topology with 86 Nodes. 26

3.3 Example of Link Characteristics. 27

3.4 CDF of Hop Count versus Hop Count. 30

3.5 CDF of Total ETX Path Cost along Path versus ETX Path Cost. 30

3.6 CDF of Hop Distance Stretch versus Hop Distance Stretch Value. 31

3.7 CDF of ETX Path Stretch versus ETX Path Stretch Value. 32

3.8 CDF of Routing Table Size with Respect to Number of Nodes. 34

3.9 Comparison of Packet Latency, for Different Path Lengths, Expressed in

Hop Count. 35

3.10 Amount of Data and Control Packets Transmitted against Node Id Using

Link ETX as Routing Metric. 36

3.11 Amount of Data and Control Packets Transmitted for Node 12. 37

3.12 Amount of Data and Control Packets Transmitted for Node 43. 38

3.13 Amount of Data and Control Packets Transmitted for Node 31. 39

3.14 CDF: Loss of Connectivity with Global Repair. 41

3.15 CDF: Loss of Connectivity for Different Global Repair Period, Source Rate

20 Seconds/Packet. 41

3.16 CDF: Loss of Connectivity for Different Global Repair Period, Source Rate

10 Seconds/Packet. 42

3.17 Amount of Control Traffic for Different Global Repair Periods. 45

3.18 CDF: Loss of Connectivity for Different DAG Repair Timer Values for

Global+Local Repair, Source Rate 20 Seconds/Packet. 45

LIST OF FIGURES x

3.19 CDF: Loss of Connectivity for Global Repair and Global+Local Repair,

Source Rate 10 Seconds/Packet. 46

3.20 CDF: Loss of Connectivity for Global Repair and Global+Local Repair,

Source Rate 20 Seconds/Packet. 47

3.21 Number of Control Packets for Different DAG Sequence Number Period,

for Both Global Repair and Global+Local Repair. 47

3.22 CDF of End-to-End Hop Count for RPL and Ideal Shortest Path in Home

Routing. 48

3.23 CDF of ETX Path Cost Metric for RPL and Ideal Shortest Path in Home

Routing. 49

3.24 CDF of Hop Distance Stretch from Ideal Shortest Path. 49

3.25 CDF of ETX Metric Stretch from Ideal Shortest Path. 50

3.26 Packet Latency for Different Hop Counts in RPL. 50

3.27 CDF of Total ETX Path Cost versus ETX Path Cost. 52

3.28 CDF of ETX Fractional Stretch versus ETX Fractional Stretch Value. . . . 53

3.29 CDF of Fractional Hop Count Stretch. 53

3.30 End-to-End Packet Delivery Latency for Different Hop Counts. 54

3.31 Data and Control Packet Comparison. 55

3.32 Data and Control Packets over Time for Node 1. 56

3.33 Data and Control Packets over Time for Node 78. 56

3.34 Data and Control Packets over Time for Node 300. 57

3.35 Scaling Property of Maximum Control Packets Processed by Any Node over

Time. 58

3.36 Comparison of Distribution of Fraction of Path Change. 59

3.37 Unreachability time to DAG root for different DAG repair periods (RPL). . 59

3.38 Numbers of Control Packets for Different Global Repair Timer Periods. . . 60

3.39 ETX Fractional Stretch Factor for Different Tolerance Levels. 61

3.40 Number of times parents changed across the DAG. 62

3.41 Control overhead for difference tolerance levels. 62

3.42 Distribution of Fraction of Path Change for Network A. 64

3.43 Distribution of Fraction of Path Change for Large Network C. 64

4.1 RREQ forwarding in LOADng. 72

4.2 RREP forwarding in LOADng. 72

4.3 A balanced tree with B = 3. 74

LIST OF FIGURES xi

4.4 Maximum control packets processing for RPL and LOAD-ng. 83

4.5 Control overhead for RPL and LOADng. 84

4.6 Control overhead for each node in a large network. 84

4.7 Total control packets processing - RPL vs LOADng in small network. . . . 85

4.8 Total control packets processed in network against time in large network. . 86

4.9 Control overhead vs. node ID for different application rates, LOADng. . . . 88

4.10 Control overhead vs. node ID for different application rates, RPL non-storing. 88

4.11 End-to-end hop distance for RPL and LOAD-ng. 90

4.12 CDF of the total ETX path cost in a large network. 91

4.13 End-to-end delay for RPL and LOADng. 91

4.14 End-to-end delay for RPL and LOADng - large network. 92

4.15 End-to-end delay for RPL and LOADng, zoomed in. 93

4.16 End-to-end delay vs. hop distance for RPL and LOADng. 94

4.17 Maximum RAM occupancy - RPL non-storing vs LOADng. 96

4.18 Maximum RAM occupancy in bytes for each node in a large network. . . . 97

4.19 End-to-end hop distance for RPL and LOADng; P2P application. 101

4.20 ETX path cost for RPL and LOADng; P2P application. 101

4.21 Maximum RAM occupancy for RPL non-storing and LOADng; P2P appli-

cation. 103

4.22 End-to-end delay comparison : P2P application. 103

4.23 Packet length for LOADng, RPL storing and non-storing modes. 104

4.24 Average control overhead per node with network size. 106

4.25 Total control packets in network with network size. 106

4.26 Maximum RAM occupancy in bytes against network size. 107

5.1 Total DAO transmissions (Tx) and receptions (Rx) versus time and rank. . 115

5.2 Minimum DAO buffer requirement against time for different ranks. 116

5.3 Total DAO Tx + Rx versus time and rank for the 1000-node grid topology. 116

5.4 DAO reach time for distributed algorithm. 123

5.5 DAO reach time for centralized algorithm. 124

5.6 DAO reach time for all mechanisms. 124

5.7 Maximum packet buffer size. 125

5.8 Maximum RAM consumption. 126

5.9 Average control packet overhead. 126

5.10 DAO round-trip time. 127

LIST OF FIGURES xii

5.11 Data packet delivery latency. 127

5.12 Stability of ‘K’ with time. 128

5.13 Routine at LBR - centralized parameter estimation. 131

5.14 Routine followed at nodes - distributed parameter tuning. 132

5.15 CDF of data delivery delay. 134

5.16 Maximum buffer occupancy against network size. 134

5.17 Maximum RAM occupancy against network size. 135

5.18 CDF of DAO round trip time. 136

5.19 CDF of time taken by DAOs to reach the DAG root. 136

6.1 Proposed DAO target option for aggregation. 140

6.2 DAO reach time for both mechanisms. 143

6.3 Maximum RAM consumption. 144

6.4 Average control packet overhead. 144

6.5 Data packet delivery latency. 145

7.1 A DAG created by RPL. 150

7.2 Example of unbalanced parent selection. 150

7.3 Example of balanced parent selection. 151

7.4 Imbalance metric (I) vs Network size. 158

7.5 Top level variance in energy expense. 158

7.6 CDF of energy expense vs % of nodes. 159

7.7 Network Lifetime vs Network size. 160

7.8 Improvement fator by load balancing vs Network size. 161

7.9 Imbalance Factor for Default RPL, Proposed Heuristic, and Maximally Bal-

anced DAG. 162

7.10 Top level Variance in Packet Transmission for Default RPL, Proposed Heuris-

tic, and Maximally Balanced DAG. 162

7.11 Time to run compensate algorithm. 163

8.1 LLNs Connected to an AS. 167

8.2 HIPC in a complete Protocol stack for LLN Devices 167

8.3 Distributed Processor Modules in HIPC. 169

8.4 Centralized Processor Modules in HIPC. 171

List of Tables

1.1 Routing Requirements for different LLNs 15

3.1 Path Quality CDFs. 33

3.2 Loss of Connectivity Time, Data Rate - 10 Seconds / Packet. 43

3.3 Loss of Connectivity Time, Data Rate - 20 Seconds / Packet. 44

4.1 Comparison of Existing Literature and the Contributions of This Study. . . 70

4.2 Simulation settings. 81

Abstract

In early 2008, a new IETF Working Group (WG), namely ROLL, was char-

tered to investigate the suitability of existing IP routing protocols for Low

Power Lossy Networks (LLNs), which at the time were suffering compatibility

issues due to the pervasive use of proprietary protocols. Given the vision of

the Internet of Things (IoT) and the role LLNs would play in the future Inter-

net, the IETF set out to standardize an IPv6 based routing solution for such

networks. After surveying existing protocols and determining their unsuit-

ability, the WG started designing a new distance vector protocol called RPL

(recently standardized in IETF RFC 6550) to fulfill their charter. Joining the

WG efforts, we developed a very detailed RPL simulator and using link and

traffic traces for existing networks, contributed with a performance study of

the protocol with respect to several metrics of interest, such as path quality,

end-to-end delay, control plane overhead, ability to cope with instability, etc.

This work was standardized as IETF Informational RFC 6687.

This detailed study uncovered performance issues for networks of very large

scale. In this thesis, we provide an overview of RPL, summarize our find-

ings from the performance study, analysis and comparison with a reactive

lightweight protocol and suggest modifications to the protocol that yield signif-

icant performance improvements with respect to control overhead and memory

consumption in very large scale networks. For future work, we propose a rout-

ing technique, named Hybrid Intelligent Path Computation (HIPC), along with

modifications to the original RPL protocol standard, that outperforms solely

distributed or centralized routing techniques. Finally, we also show how one

can facilitate Quality of Service (QoS), load balancing and traffic engineering

provision in the IoT without incurring any extra control overhead in number

of packets other than that already consumed by the proposed IETF standard,

using a combination of centralized and distributed computation.

Glossary

6LowPAN Low Power IPv6 Personal Area Network

AMI Advanced Metering Infrastructure

AODV Ad-hoc Distance Vector Routing Protocol

BAN Body Area Network

CDF Cumulative Distribution Function

CoAP Constrained Application Protocol

DAG Directed Acyclic Graph

DAO Destination Advertisement Option

DIO DODAG Information Option

DIS DODAG Information Solicitation

DODAG Destination Oriented Directed Acyclic Graph

EPC Electronic Product Code

ETX Expected Transmission Count

IETF Internet Engineering Task Force

IoT Internet of Things

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

LBR LLN Border Router

GLOSSARY xvi

LLN Low-Power Lossy Networks

LOADng LLN On-demand Ad-hoc Distance Vector Routing Protocol - new generation

MAC Medium Access Control

MANET Mobile Ad-hoc NETworks

MP2P MultiPoint to Point

MTU Maximum Transmission Unit

OSPF Open Shortest Path First

P2MP Poiont to MultiPoint

P2P Point to Point

PAN Personal Area Network

PDR Packet Delivery Ratio

PLC Power Line Communication

ROLL Routing Over Low-power and Lossy networks

RPL Routing Protocol for Low-Power Lossy Networks

RREP Route Reply

RREQ Route Request

SRH Source Routing Header

TCP Transport Control Protocol

WSN Wireless Sensor Network

1

Introduction

1.1 Introduction to LLNs: Low-Power Lossy Networks

The Internet is increasingly becoming an inevitable part of our lives. The number of

computing and interconnected devices has grown exponentially within last 2 decades, and

is expected to grow further. Current day Internet encompasses desktop, data centers,

laptop and cellular devices, which generate a huge data traffic. Currently, we have, on

an average, 2 connected device per person in this world. However, by the end of 2020, it

is estimated that the world will have 6.5 connected devices per person, or an estimated

50 Billion connected devices in total (1). The vision of the future Internet not only

includes conventional computing and capable devices, but also everyday objects. Objects

such as sensors and actuators in industry, health monitoring, vehicles, electronic devices,

AMI (Advanced Metering Infrastructure) meters are expected to be integrated into, and

be controlled by the user through the Internet. The number of applications that next

generation sensor/actuator networks can cover is endless.

As time progresses, we have more and more sensors for our daily use and in the

community around us. Sensors and actuators are an essential part of modern day indus-

trial automation settings and manufacturing plants for the purpose of monitoring, alert

reporting including prediction of critical fault and overtaking emergency measures. In

health-care industries, patient monitoring includes various sensors that interconnect us-

1. INTRODUCTION 2

ing a Body Area Network (BAN) or a Personal Area Network (PAN). Smart homes and

intelligent buildings employ sensors to perform tasks ranging from home security, alarm

monitoring, climate control, smoke or gas detection to control of electrical appliances and

power usage monitoring. At the same time, objects without a sensor/actuator part can

be required to be accessed for management, tracking and data collection as well. For

example, any object with an intelligent tag can be subjected to monitoring in real time.

Intelligent object tags such as Radio-Frequency Identification (RFID) tags or Electronic

Product Codes (EPC) (2) can help improve object visibility. Any object with an identifier

needs to be traced, and their status and current locations may need to be updated in real

time. For smart grids, any AMI meter may need to communicate with the appliances at

home or any installed (solar) power generator and communicate to the base stations for

power distribution. At the same time, wireless sensor networks are entering the area of

smart cities and environment monitoring. Thus the number of applications and use cases

is only expected to grow in the future.

In a nutshell, the next generation of the Internet is not going to be constrained by

user traffic such as browsing websites, video traffic or voice traffic, but will include a

large share of data generated and directed towards ‘smart objects’. A smart object is

any entity that is uniquely identifiable, and can communicate with a radio or over Power

Line Communication (PLC) media and can be accessed by the user to perform specific

task or used for data accumulation. Each smart object may contain an intelligent tag

such as RFID or EPC, a sensor and/or an actuator. However, the smart objects posses

negligible processing horse power with few KBs of RAM and flash storage compared to

the routing elements in the Internet. For example, an Atmel 8-bit AVR microcontroller

combines 128KB of programmable flash memory, 4KB SRAM, a 4 KB EEPROM working

at a maximum of 16 MHz (MIPS). The computing device along with the communication

device can be embedded into many objects such as engines, switches, meters, sensors to

incorporate the ‘smartness’ into them. The vision of the Internet of Things (IoT) includes

all such smart objects from different contexts, and aim to provide a common platform

1. INTRODUCTION 3

connectivity via the Internet. Thus, the Internet of Things can be defined as a world-wide

network of interconnected objects and commodities uniquely addressable from anytime,

anyplace by anyone (3, 4).

Networks connecting smart objects and sensor nodes, often operate in highly variable

link quality conditions. The link speed for these networks are often limited to a few

tens of Kbps at maximum. The interconnection of various smart objects, for the link

quality connecting them and due to the constraint on size and capacity of the processing

units, are classified as Low Power and Lossy Networks (LLNs). LLNs are emerging as

a new deployment scenario in many environments, clearly those related to smart home,

building or industrial automation, communication among AMI meters in a smart grid

and for the most part of the envisioned Internet of Things (IoT). The challenges in these

networks include very low device power and memory, highly varying link quality, frequent

link outage, etc. Requirements for these deployments such as in smart home, building or

industrial automation, communication among AMI (Advanced Metering Infrastructure)

meters in a smart grid, etc., relate to delay bound, scalability, strict time bounds on

protocol convergence after any change in topology (5), etc. For instance, RFC 5673 (6)

requires bounded and guaranteed end-to-end delay for routing in an industrial deployment,

while RFC 5548 (7) mandates scalability in terms of protocol performance for a network

of size ranging from 102 to 104 nodes. Link state routing protocols, such as OSPF(8),

OLSR (9), IS-IS, and OLSRv2 (10) tend to flood the network with link updates. Since

links in LLNs suffer from severe temporal variation and frequent outage, these protocols

fail to keep a low control cost overhead (11). Classical distance vector protocols used in

the Internet, such as EIGRP (designed by CISCO, (12)), AODV (13), etc., fail to provide

quick recovery from link churn, and frequent topology updates.

A suitable protocol for LLNs therefore needs to abide to strict delay constraints, while

maintaining a minimum control overhead, and should be capable of providing quick re-

covery from frequent link outage. The IETF ROLL (Routing Over Low power and Lossy

network) working group (14) was chartered to identify an IP routing solution for such net-

1. INTRODUCTION 4

works under specific deployment scenarios. After surveying existing solutions, the working

group published a number of documents involving specific routing requirements for indi-

vidual deployment scenarios, and then concentrated its efforts on designing standardized

routing protocols suitable for these deployments. As a result, RPL (IPv6 Routing Protocol

for Low-Power and Lossy Networks), a distance vector protocol with proactive route cre-

ation has been standardized in RFC 6550 (15), which provides mechanisms for multipoint-

to-point, point-to-multipoint, as well as point-to-point traffic (for a brief overview of RPL,

please refer to Section 2.1).

RPL was designed to meet the requirements spelled out in RFCs 5826 (5), 5673 (6),

5548 (7), and 5867 (16). For example, all the requirement documents mandate parameter

constrained routing, and RPL by means of Objective Function (OF) design, can chose

parents conforming to the routing constraints. At the same time, RPL supports ‘zero

configuration’ at the set up phase and while new nodes join the network, which means

human intervention is not needed. While Home and Building routing requirements (5, 16)

prefer an end-to-end delay of less than 500 ms and less than 120 ms respectively, simulation

of RPL in such environments provides satisfactory results (17, 18, 19). At the same time,

(17) has shown RPL can perform faster repair to converge in case of link churns, which

is mandated by Urban (7) and Home (5) LLN routing requirements. We will review the

core requirements spelled out in these documents in Section 1.3.

1.2 From Proprietary WSN Solutions to Standardization

For over two decades, research in Wireless Sensor Networks (WSN) field has grown in

popularity, and the constrained nature of the WSN system led researchers to believe that

layered architecture must be abandoned to make way for cross layer optimizations. As

we observe the evolution of TinyOS ((20)), conventional packet header was replaced by

the Active Message Dispatch ID ((21, 22)), thus leading away from IP as opposed to the

mainstream Internet. As pointed out in (23), several other arguments led to denouncing

the Internet architecture. Firstly, it was assumed that individual devices will not require

1. INTRODUCTION 5

addressing, or no sensor in particular will be queried from inside or from outside the net-

work; instead, applications will be ‘data centric’ and will focus on measurements from

an area. Secondly, while IP networks are designed to handle various applications with

different traffic profile, sensor networks will be limited to sensing tasks only, thus opti-

mization based on application profile is more desired. Finally, localized algorithms will

bolster the required scalability and robustness in these networks as “sensor networks have

different enough requirements to at least warrant re-considering the overall structure of

applications and services”, thus leading to introduction of ‘Directed Diffusion’ (23).

However, where traditional wireless sensor networks were previously presumed to be

a separate entity from the mainstream Internet, more and more deployments along with

individual components are required to be accessed from outside the network. For example,

a patient’s family members may require his/her status over the Internet in real time; AMI

meters will need to be accessed by their respective owners via the Internet in real time

or the owner may need to be notified about any incident, such as an electrical fault or

overload in the house. In any such case, each object within the network must be given

unique address to be identified and accessed. Based on operation (e.g., alert or regular

query or management), within a single network, there will be multiple applications running

with different traffic pattern. Thus, LLNs needed to be connected with the existing IP

architecture, either by adopting it or by using proper protocol translation gateways.

The authors in (24) proposed an architecture to integrate WSN with IP based external

network. It provides platform for achieving mobility, web enablement, time synchroniza-

tion, and security while accessing the sensor networks as a part of the IoT. The routing

protocol used is HiLoW, with mobility management protocol called MARIO (Mobility

Management Protocol to Support Intra-PAN and Inter-PAN Handover with Route Opti-

mization for 6LoWPAN (25)). Security is provided through the protocol SSNAIL (26).

The architecture is a combination of lightweight protocols at different layers, and a cross

layer optimization module which locates vertically from PHY/LNK layer to the adapta-

tion layer to provide a collaboration interface with the upper layers. Thus, this paper

1. INTRODUCTION 6

describes how the architecture and protocols in different layers for the sensors / devices

and gateways should be, so integration with IP networks is possible.

1.2.1 Using application gateways

Indeed, most of the existing ad-hoc and sensor networks with proprietary solutions (e.g.,

ZigBee or Wireless-Hart) implements complex application gateways that translate IP world

to the non-IP format that their Wireless Sensor Network deployments (WSN) understands

to connect to the Internet. However, problems with this approach are multiple to prevent

this to be adopted on larger scale, as pointed out in (22) and (27).

• The gateways need to be configured differently for different deployments. A protocol

translation, however, will need to understand any application profiles in advance

that may be used in the WSN. Subsequent modification or addition in application

protocol will require reconfiguring the gateway, which limits the network agnostic

innovation and growth that IP architecture currently offers;

• The gateway normally prevents real-time end-to-end connection between the sen-

sor/actuator device and the end-user. Since it needs to store different states and

tables for the protocols used within the WSN, seamless transition through the gate-

way is often obstructed when a query is received;

• These gateways transform HTTP packets contained in IP datagram to the format

the proprietary deployment understands, thus requiring reconfiguration and careful

synchronization between the gateway and end devices any time there is an update

in any of the concerned protocols used. Needing to change or upgrade the border

gateway for any future improvement and addition is a hindrance to innovation and

scalability.

1.2.2 Using standard protocol suits

The IETF Constrained ReSTful Environments (CoRE) Working Group (28) is in the

process of standardizing Constrained Application Protocol (CoAP) (29) as a specialized

1. INTRODUCTION 7

web transfer protocol for Machine-to-Machine applications in networks with constrained

nodes and in LLNs. If CoAP is used as application layer protocol, the needed translation at

any border router will be from HTTP to CoAP, and thus the border router can be agnostic

to the set of applications deployed in the network (22). Ubiquity of IP architecture can also

provide real time communication with the user, as well as benefits provided by network

optimization and debugging tools designed specifically for IP. Clearly, since IPv4, IPv6

and 6LoWPAN header compression formats are standardized, translating between IPv4

to IPv6 or IPv6 to IPv6+6LoWPAN packet format can be done much faster compared to

table lookup as provided by the application gateways. The problem, as it stood between

the dream of extending IP to everyday objects and reality of implementation, still was the

heavy memory footprint of standard IP protocol stack.

With the successful implementation of µIP over low power IEEE 802.15.4 links, the

authors in (30, 31) showed that a full RFC compliant TCP-IP stack on 8 bit architecture

is possible which does not take advantages of optimizations and mechanisms developed

to keep WSNs low resource hungry. However, where 802.15.4 links support MTU of only

127 bytes, IPv6 packets, according to the standard, must support a maximum MTU of

1280 bytes. Clearly, an adaptation layer between the layer 3 and layer 2 was needed to

address the issues such as asymmetric routing, fragmentation, unreliable delivery, etc. and

consequently, the IETF formed the 6LoWPAN working group. Mechanisms to carry IPv6

datagram over 802.15.4 links, fragmentation and header compression to accommodate as

much payload as possible in tiny 127 bytes MTU was standardized in RFC 4944 (32).

The authors in (22) implemented a complete IPv6 based architecture for a wireless

sensor network, while employing several existing mechanisms to improve the network per-

formance. The link layer protocol employs a Media Management Control (MMC) that is

based on B-MAC (33) and WiseMAC (34). For reliability over the lossy link, each unicast

transmission is mandated to have an Acknowledgement back, which is essentially another

802.15.4 data frame with optional payload for scheduling optimization. The approach used

header compression in a similar fashion that is described in RFC 4944, and was able to

1. INTRODUCTION 8

compress a 48-byte UDP/IPv6 header down to 6 bytes when communicating over link-local

unicast, 11 bytes with global unicast and multicast within the WSN, and 25 bytes when

communicating with arbitrary IP devices outside the WSN. Routing wise, any forwarder in

the network implemented three orthogonal mechanisms: hop-by-hop recovery, streaming,

and congestion control. This deployment was shown to achieve a total ROM footprint of

24, 038 bytes and a RAM footprint of only 3, 598 bytes including the operations for all the

stacks, thus proving IP enabled tiny sensors to be a reality much easier to achieve than

what one could presume merely a decade back, even while employing security and header

compression mechanisms.

1.3 Unique Routing Challenges in LLNs

Though it had been established that IPv6 can be implemented for resource constrained

devices, the routing protocol was yet to be finalized. Due to the device capacity and link

characteristics, the routing protocol required for proper operation within the LLNs would

face significant challenges due to inability of the devices to store detailed routing states

or network topology. Also the control overhead would have to be a fraction of what is

endured in the Internet, with a network scale still ranging to thousands of nodes. The

LLN devices are mostly powered by batteries, with little to no opportunity for energy

scavenging and are expected to last a few years without any power source. At the same

time different deployment scenarios have various requirement based on their application

profile, traffic characteristics and criticality of application data. The ROLL Working

Group, thus proposed documents detailing the routing requirements pertaining to four

deployments scenarios - Urban LLN deployments in RFC 5548 (7), Industrial Automation

LLN deployments in RFC 5673 (6), Home LLN deployments in RFC 5826 (5), and Building

LLN deployments in RFC 5867 (16). The common routing challenges are pointed below:

• Parameter constrained routing: Routing requirements for all of the above deploy-

ments include a MUST support for node constraint or parameter constraint based

routing. For example, the protocol should be able to choose a mains powered node

1. INTRODUCTION 9

over a battery operated node while routing. Such constraints can also include bat-

tery energy level, CPU speed, RAM size, or any set of constraints placed on the

device by the user.

• Auto configuration: Routing protocol for all types of deployments should support

‘zero configuration’ at the set up phase and while new nodes join the network, which

means “a node can obtain an address and join the network on its own, without

human intervention” and without allocating device address manually.

• Unreliability of links and network dynamicity: The routing protocol can never as-

sume that all links are reliable or bi-directional. It is inevitable for LLNs that link

churn will be frequent due to harsh environment and electro-magnetic interference.

The protocol MUST be able to converge within a reasonable amount of time, without

spending much control overhead.

1.3.1 Urban LLN routing requirements

As discussed, concepts of smart city or smart locality where sensing and actuating nodes

are placed in outdoor environments to improve living conditions as well as to monitor

environmental conditions is increasingly making urban LLN more and more imminent.

For Urban LLNs, deployment of nodes normally happen in batches of in the order of

100−1000 devices. The deployment may easily span tens of thousands of devices in total,

and may consist of 102 − 107 devices in future roll-outs. The lifetime of these devices

are expected to be 10 − 15 years where the energy sources for these nodes are mostly

non-rechargeable batteries or battery with very limited scope of energy scavenging or

harvesting.

The application profile for urban LLNs mostly includes reporting, both periodic mea-

surement and queried measurement reporting. Periodic or regular measurement reporting

traffic is usually low in frequency, such as once in few hours or once in a day. Queried

measurement traffic, on the other hand, is generated by applications outside the LLN in

a random on-demand fashion that can be modeled with a heavy-tail distribution. These

1. INTRODUCTION 10

measurement traffics are usually directed from the sensors to the border router, where the

routing protocol SHOULD provide the option of delivering the acknowledgement in the

reverse direction. The regular measurement traffic is delay tolerant to some extent, and

should reach the border router within a small fraction of reporting time. Thus, the regu-

lar measurement traffic has a preferable latency requirement of < 1 minute, and queried

measurement (e.g., live AMI meter readings) enjoys a latency bound of the order of few

seconds. However, the urban LLN system may rarely trigger alarms, which generate ‘Alert’

traffic. Alert traffic is unicast towards the LBR, and is normally generated by a group of

sensors, thus creating a number of directed and simultaneous flows. Alert traffic is highly

delay sensitive; independent of number of flows or number of reporting devices, such traffic

should reach the border router within a few seconds (< 5 seconds). From the application

profile, it is imperative that the routing protocol must support high directional sensed

data traffic from sensors to the border router and queries and control traffic from the bor-

der router to sensors and actuators. Apart from such unicast traffic, the protocol should

also support efficient large-scale messaging (multicast traffic) to groups of actuators and

simultaneous MP2P traffic, such as system-wide alerts.

1.3.2 Industrial automation routing requirements

In industrial automation, wired networks are currently being used for the purpose of col-

lecting information, as well as process control, and closed loop control. However, wires

provide reliable information propagation at an expense of reduced capacity of remote

management and increased difficulty of installation and maintenance. On the other hand,

low-power wireless devices provide a plant with the possibility of increased number of

collection points and control points that can be remotely managed. Hence it is foreseen

that installing sensors and actuators that can communicate wirelessly will significantly

improve the productivity of any industrial automation setting. However, given the relia-

bility and low-latency that a cable provides, vendors do not expect the currently existing

wired control modules to be completely replaced by a wireless counterpart, rather having

1. INTRODUCTION 11

wireless networks to augment the current setting to provide better visibility to the system.

RFC 5673 (6) provides the detailed requirement of a routing protocol that may be used

to connect such low power wireless field devices to improve process control and factory

automation.

The process applications in industrial automation can be categorized into three broad

divisions, and further divided into 6 classes of traffic based on their criticality. Safety

related applications are always considered as emergency action, and fall into Class 0 traf-

fic. This class of traffic is extremely delay sensitive and requires most reliability, as they

indicate critical failure in the process control requiring urgent action and/or human in-

tervention. However, this traffic class should be considered usually dormant, and only

appearing once in many years. The second kind of applications are related to Control

mechanism, more specifically critical closed-loop regulatory control (Class 1 traffic), non-

critical closed-loop supervisory control (Class 2 traffic) and open loop control (Class 3

traffic) where human intervention is present. The control traffic, while are sensitive to

latency requirements, they are also sensitive to jitter, as jitter can destabilize a control

algorithm. The third type of application normally involves monitoring and asset tracking,

which can either be alert or event based maintenance traffic (Class 4) and event/data

logging and upload/download traffic (Class 5). Clearly, lower the class number of the

traffic, higher is the sensitivity for latency and reliable delivery. Since Class 0 and Class

1 traffic are extremely crucial, wireless networks are expected to augment the existing

infrastructure for providing communication to non critical control traffic of Class 2 and 3,

and all monitoring traffic of Class 4 and 5.

The topology for majority of industrial automation LLNs consists of 10 − 200 nodes,

which act both as field devices and as forwarders. At this point, the maximum number of

hops to reach the border router, or a router connected to the backbone is not envisioned to

be more than 20. Where there is no specific requirement on the number and/or physical

placement of the border router or backbone network, it is generally assumed that multiple

border routers should be deployed in order to keep the LLN subsets to a smaller size. A

1. INTRODUCTION 12

routing protocol should support provisioning of available bandwidth according to traffic

class and should accommodate occasional burst of traffic arising from alert or monitoring

data. Thus, a protocol with QoS provisioning or route computation based on traffic class

may often be preferred. Since class 0 and class 1 traffic is not handled via a routing

protocol for LLN, the convergence requirement is somewhat loose. RFC 5673 states that

the protocol must converge after adding a new field device within order of a few minutes,

and delivering a packet via established route, or determining the absence of a functioning

one, should be achieved within order of tens of seconds.

1.3.3 Home automation routing requirements

In recent past, smart homes increasingly are using more and more sensing devices and

actuators for automation purpose. As in industrial setting, it is argued how wireless

communication of smart objects in homes would ease the installation and reduce the

cost of maintenance in near future. A home network encompasses both actuators such

as light dimmer, heating valve as well as sensors such as switches, leak detectors, blood

pressure monitors. The network is supposed to be accessible and controllable via an IP-

enabled application, where the devices respond to the queries and controls sent from a web

application, cell phone, PDA or a mobile remote control. While these devices previously

had been wired through powered lines, they are expected to operate over a wide range of

communication media in near future, such as IEEE 802.15.4, Bluetooth, low-Power WiFi

and low-power PLC (Power-Line Communication) links. Some typical use cases of home

automation applications would include the following:

• Lighting and heating applications, both event driven (e.g. person walking into the

kitchen) and query based;

• Appliance regulation based on Demand-Side Management, where depending on avail-

able electrical supply, use of heavy appliances such as air conditioning, climate-

control systems, washing machines, etc. can be regulated;

1. INTRODUCTION 13

• Demand Response based regulation, where appliances are regulated also depending

on pricing information from vendor;

• remote video surveillance over the IP, where the video stream is initiated either by

query by the end user or as a result of an alarm;

• Healthcare based applications that include monitoring and reporting of patient body

temperature, blood pressure, heart rate, ECG, etc. and alarm generation in case of

criticality;

• Alarm systems identifying a risk situation.

The home LLNs are subject to a topology size of few tens to few hundreds of nodes,

and the requirements are mainly spelled out for networks with fewer than 250 nodes, with

a maximum hop distance of 4. The traffic pattern is mainly demand based, for example

where wall switches or remote controls generate signal to activate actuators responsible

for light/temperature control. These traffics are random and can take place only a few

times (∼ 1 − 10 times) an hour. The home LLNs application profile also includes query

based traffic, such as the user querying for temperature/air pressure/rain sensor reading.

These traffics may be both periodic or on demand, and has a frequency similar to the

demand based traffics. The routing protocol MUST support mobility for remote control

based applications and wearable healthcare devices that are expected to be used within the

home network. The round trip latency differs for mobile and stationary nodes. Where the

routing protocol must converge within 500 ms if no node has moved, for instances where

originator nodes have moved, the protocol must provide a response within 4 seconds.

1.3.4 Building automation routing requirements

Similar to industrial automation, building applications such as Heating, Ventilation and

Air Conditioning (HVAC) have been being controlled and monitored via wired infrastruc-

ture for decades. Systems to control lighting, elevators and monitor physical security and

fire hazards mostly involved human in the loop operation without much scope of automa-

1. INTRODUCTION 14

tion. However, with the advent of wireless communication enabled sensors and actuators,

gradual replacement of wired components with their wireless counterparts became immi-

nent. In a building automation system, sensor devices can be battery or main powered,

but the actuators are almost all the time mains powered. Due to this reason, it is also

envisioned that wired and wireless links are likely to coexist in building automation LLNs.

Since Building management systems are often divided into several independent au-

tonomous subsystems, it is predicted and preferred that individual sensors and actuators

within the LLN will be exchanging real time traffic. In conjunction, several alarms and

event data will need to be reported outside the LLN. Typically, in a building automation

LLN, 30% of the traffic will remain inside the LLN as P2P traffic within the devices such

as sensed data from sensor to the controller and acknowledgement thereof, control signals

from one controller to another controller, etc. The P2P traffic has a typical frequency of

1 packet/minute. On the other hand, 70% of traffic is MP2P, and routed off the LLN.

Multicast or P2MP traffic may be present where applications such as turning all lights in

the floor on, or during network initialization, but is considered rare in building automation

scenario.

As pointed out in (16), routing protocol such an LLN should support a network scale

of at least 2000 nodes, where at least 1000 of them will function as routers. Scope of

subnetworking should be supported for up to 255 nodes. The protocol, however, may not

need to support mobile routers, but only as end hosts. While P2P traffic is not expected

to traverse more than 5 hops, a round trip latency (response after sending a query) should

be kept less than 120 ms for such a network. Clearly, the latency requirement is most

stringent for building automation among all LLN deployment scenarios. The different

routing requirements are summarized in Table 1.1 for quick reference of the reader.

1.4 Contributions of This Thesis

Since RPL and routing in LLNs altogether have been a nascent addition to the modern

day Internet, before widespread implementation one needs to make sure that the protocol

1. INTRODUCTION 15

Criteria RFC 5548
(Urban)

RFC 5673
(Industrial)

RFC 5826
(Home)

RFC 5867
(Building)

Constrained
Routing
/ Node
coloring

MUST MUST MUST MUST

Support of
Mobility

MAY NOT be
needed

SHOULD be
supported for
mobile workers

SHOULD be
supported for
Remote control
& Healthcare
Apps

SHOULD be
supported only
for end devices,
not routers

Network
Scale

100− 104 10− 200 250− 1000 Up to A few
1000s

Latency
Bound

Fraction of
the smallest
reporting inter-
val other than
alerts (∼ 4− 5s)

10s of seconds 500 ms RTT 120 ms for static
nodes

Support of
Multicast
/ Anycast

Both are MUST Multicast Multicast MP2P

Table 1.1: Routing Requirements for different LLNs

behaves as it is intended to. We have designed a detailed RPL simulator, with a GUI

to observe the protocol’s performance under varying parameter settings, different traffic

scenarios and different network topologies. At the same time, our aim has been to find

out any probable incident where the protocol might not be suitable for constrained de-

vices and/or large deployments. The detailed and exhaustive simulation work led us to

believe that RPL, as proposed in the IETF standard, may not perform very well in large

scale networks . We investigated the reason, and provided cases where the standard RPL

operation leads to congestion due to control plane traffic that halts normal data plane

traffic. We further proposed modifications to RPL in scheduling control traffic to miti-

gate the mentioned congestion and improving the protocol performance for intended large

deployments. We have observed that limited centralized decision making is inevitable for

routing in LLNs, as the routing elements are not capable of high performance computing.

A hybrid approach rather than adopting a solely distributed or a centralized routing tech-

1. INTRODUCTION 16

nique, along with necessary modifications of the IETF standard RPL, can be adopted to

the Internet of Things to provide better scalability, performance and handling the control

overhead. We propose a routing technique, named Hybrid Intelligent Path Computation

(HIPC), along with modifications to the original RPL protocol standard, that outperforms

solely distributed or centralized routing techniques. Finally, we also show how HIPC can

facilitate Quality of Service (QoS), load balancing and traffic engineering provision in

the IoT without incurring any extra overhead other than that already consumed by the

proposed IETF standard.

This document is organized as follows: In Chapter 2, we provide a brief overview of

the RPL protocol standardized in the IETF, while key performance features stemming

from our performance study in our in-house simulator are covered in Chapter 3. In Chap-

ter 4, we compare two main routing techniques, namely proactive and reactive routing,

and perform an exhaustive qualitative and quantitative simulation analysis between the

proactive protocol RPL, and a recently introduced reactive protocol, namely LOADng.

Chapter 5 describes why RPL in its default setting does not scale well for large scale

networks, and presents our proposals for distributed and centralized heuristics that fix

performance issues in RPL non-storing mode. In Chapter 6, we describe how multiple

destination advertisement can be combined for RPL storing mode and, as was the case

in Chapter 5, the performance can be enhanced for large scale networks. In Chapter 7,

we provide a lightweight load balancing approach to maximize LLN lifetime without in-

curring extra overhead on top of RPL. Chapter 8 briefly introduces our proposed routing

technique, Hybrid Intelligent Path Computation (HIPC), and shows how a deployment

can achieve specific traffic engineering tasks such as load balancing, policy enforcement,

etc. This is done in broad strokes, with the details left as future work. Finally, Chapter 9

summarizes the work completed and suggests future steps as well as the challenges to be

answered.

2

RPL: Routing Protocol for LLNs

Designing a routing protocol for Low-Power and Lossy Networks (LLNs) imposes great

challenges, mainly due to low data rates, high probability of packet delivery failure, and

strict energy constraints in the nodes. The IETF ROLL Working Group took on this task

and specified the Routing Protocol for Low-Power and Lossy Networks (RPL) in (15). In

This chapter we provide a brief overview of the protocol.

2.1 Overview of RPL

RPL is an IPv6 distance vector routing protocol (15), where a proactive routing structure

is established by the creation of a Destination Oriented Directed Acyclic Graph (DODAG)

using an Objective Function (OF) and a set of metrics/constraints. The DODAG (ab-

breviated as DAG) minimizes the cost of reaching the LLN Border Router (LBR or DAG

root) from any node in the network as per the OF in use, which can be defined to minimize

a particular metric, such as hop count or the ETX (Expected Transmission count), or any

other from the list of metrics as specified in (35). A DAG structure helps restrict the

size of routing tables for limited storage capacity nodes, as only a subset of destination

addresses are stored at any node other than the DAG root.

2. RPL: ROUTING PROTOCOL FOR LLNS 18

2.1.1 RPL - Forming and maintaining the DAG

A node that is connected to a non-RPL implementing node or a backbone network, can act

as a DAG root or LBR and has a rank of 1. The DAG root initiates the DAG formation by

advertising information about the DAG using the DAG Information Option (DIO), which

carries several information regarding the DAG, including the issuing node’s distance from

the LBR. Nodes receiving DIO, calculates its distance from LBR based on cost received

in DIO and its own cost to reach the issuing node. Nodes chose a node as their parent

which provides the lowest cost to reach the LBR. Figure 2.1 illustrates the process of

broadcasting DIOs to form the DAG and their propagation downward. The solid lines

in the figure represent the parent - child relationship in the DODAG, whereas the dotted

lines represent other available links. Each node assumes a rank 1 unit greater than its

parent’s rank.

Figure 2.1: DIO propagation and DAG formation.

2. RPL: ROUTING PROTOCOL FOR LLNS 19

DIOs are also emitted periodically from each node, triggered by a timer (trickle timer)

whose duration increases exponentially (doubled after each time it is fired). The smallest

possible interval between two DIOs is denoted by Imin, and the number of times Imin

can be doubled before maintaining a constant rate is denoted by DIOIntervaldoublings,

so Imax = Imin ∗ 2DIOIntervaldoublings. On any event that causes a change in the DAG

structure (such as new parent selection), this timer is reset to the Imin value contained

in the DIO. By increasing the duration between two DIOs, the protocol eliminates the

need of exchanging neighborhood information prematurely as the network may become

stable after a few rounds of information exchange. On one hand, for stable networks

where variation in link quality is not significant, the protocol gradually decreases the

control plane overhead over time. On the other hand, for a more dynamic topology the

protocol helps the network to adapt faster than a protocol implementing only conventional

periodic updates. The exponential decay in the frequency of trickle timer, thus increase

time duration between periodic updates and perfectly suits the needs of LLNs and, in

particular, of large smart meter networks. If a node receives DIOs from multiple potential

parents, it may choose to elect a new parent when a better path is found. RPL, however,

ignores messages that will incur x% of change in path cost, where ‘x’ is a configurable

parameter. Hence, a node does not change its parent from the current one, unless the

new parent provides a path to the DAG root with a cost less than (1− x/100) times the

current path is found.

A DODAG Information Solicitation (DIS) message may be used by nodes to proactively

solicit DAG information (emission of DIO). Nodes who join the DAG also unicast their

addresses and reachable prefixes to their parents via Destination Advertisement Option

(DAO) messages, which in turn unicast them further up the DAG to advertise destinations

reachable through them in support of ‘down’ traffic. Thus, eventually all DAOs reach the

LBR, providing routing information about the whole DAG.

RPL has been standardized to operate on two modes, ‘non-storing’ mode and ‘storing’

mode. In storing mode, a node in the LLN is capable of storing routing tables and

2. RPL: ROUTING PROTOCOL FOR LLNS 20

next hop information for all the nodes in its subtree. Whenever the node forwards a

destination prefix available via itself or any of its children nodes (DAO messages), it creates

a corresponding routing entry for the particular destination. Therefore ‘downward’ route

is maintained at every node in the DAG. Hence, when a node ‘n’ advertises a DAO for a

specific destination, the receiving nodes store node ‘n’ as the next hop for that particular

destination. The process of DAO propagation is illustrated in Figure 2.2, where node 3

acts as next hop to destination nodes 6, 7, 9, 10 to nodes 0, 2, etc.

Figure 2.2: DAO propagation and route establishment.

The non-storing mode is common in large networks or networks with extremely re-

stricted nodes. In non-storing mode, nodes do not store routes to any destination other

than the DAG root. Instead, any node, on receiving a DAO from its children or other

nodes in its subtree, forwards it to its parent. Contrary to storing mode, DAOs in non-

storing mode are unicasted to the DAG root. Thus, the DAG root or LBR, which is a

more capable device than the other LLN nodes, stores all routes to any node in the net-

work. Figure 2.2 illustrates an instance of routing a packet in non-storing mode. In the

figure, node 3 does not store routes to nodes 6, 7, 9, 10, as seen previously. The DAG root

2. RPL: ROUTING PROTOCOL FOR LLNS 21

specifies the route through node 3 for destination nodes 6, 7, 9, 10.

The DAG root issues a new DAG sequence number periodically to recompute the DAG

for major topology changes. When a new sequence number is received, nodes reset their

trickle timer, which results in emitting DIOs after the minimum value Imin, and issue a

DAO to the root after a certain amount of time, which is implementation specific. For

local link churn and anomaly, the nodes use a local repair mechanism by poisoning their

sub-DAG, and choosing a backup parent.

Figure 2.3: Data routing in RPL non-
storing mode.

Figure 2.4: Data routing in RPL storing
mode.

2.1.2 RPL - Routing through the DAG

MP2P traffic to the LBR, and P2MP traffic from the LBR to nodes follow the parent-child

links thus constructed in the DAG. For any traffic destined to the DAG root (LBR), the

packet is forwarded to the preferred parent in the DAG, in both storing and non-storing

mode. For traffic from DAG root to any other node in LLN, the packet is forwarded to the

child which contains the destination prefix in its subtree. In storing mode, a downward

route is maintained, and each node ‘looks up’ the entry for the destination in its subtree

and forwards the packet to the next-hop child. This process is explained in Figure 2.4.

In non-storing mode, since downward routes are not maintained, the DAG root con-

2. RPL: ROUTING PROTOCOL FOR LLNS 22

structs and inserts into packets a Source Routing Header (SRH), which provides the whole

route through the DAG on a hop-by-hop basis. For P2P traffic, where neither source nor

destination is the LBR, in storing mode, packets reach up the DAG through node’s parents

to a common ancestor of both source and destination, and then follow the DAG links down

to the destination. In non-storing mode, packets reach the LBR through the parents, and

the LBR creates a SRH describing which nodes to traverse downwards the DAG to reach

the destination, as illustrated in Figure 2.3. Clearly, RPL defines a very sub-optimal route

in terms of path length for P2P traffic. However, since the majority of the traffic in LLN

is either to or from the DAG root, this DAG based routing can be viewed as a trade-

off between path optimality and memory required to store routing tables in constrained

devices.

2.2 Summary

In this chapter we summarize RPL’s operation. For a detailed description the interested

reader should consult RFC 6550 (15).

3

RPL: Performance Evaluation

This chapter’s contribution is to provide details on our performance evaluation study of

RPL with respect to several metrics of interest, standardized in IETF RFC 6687 (18). This

was accomplished using real data and topologies in a discrete event simulator developed

to reproduce the protocol behavior.

After surveying existing protocols and determining their unsuitability, the IETF ROLL

WG started designing RPL. Joining the WG efforts, we developed a very detailed RPL

simulator and using topology and traffic traces from existing networks, contributed with

a performance study of the protocol with respect to several metrics of interest, such as

path quality, end-to-end delay, control plane overhead, ability to cope with instability, etc.

This work was recently standardized as IETF Informational RFC 6687 (18). Although

simulation cannot prove formally that a protocol operates properly in all situations, it

can give a good level of confidence in protocol behavior in highly stressful conditions,

when real-life data are used. Simulation is particularly useful when theoretical model

assumptions may not be applicable to such networks and scenarios. In this evaluation

chapter, real deployed network data traces have been used to model link behaviors and

network topologies.

3. RPL: PERFORMANCE EVALUATION 24

3.1 Methodology and Simulation Setup

In the context of this document, RPL has been simulated using OMNeT++ (36), a well-

known discrete event-based simulator written in C++ and NEtwork Description (NED).

Castalia-2.2 (37) has been used as a Wireless Sensor Network Simulator framework within

OMNeT++. The output and events in the simulation are visualized with the help of the

Network AniMator, or NAM, which is distributed with the NS (Network Simulator). Note

that no versions of the NS itself are used in this simulation study. Only the visualization

tool was borrowed for verification purposes. Example of such visualization can be seen in

Figure 3.1 and in Figure 3.2 in this section.

In contrast with theoretical models, which may have assumptions not applicable to

lossy links, real-life data was used for two aspects of the simulations:

• Link Failure Model: Derived from time-varying real network traces containing packet

delivery probability for each link, over all channels, for both indoor network deploy-

ment and outdoor network deployment.

• Topology: Gathered from real-life deployment (traces mentioned above) as opposed

to random topology simulations.

A 45-node topology, deployed as an outdoor network and shown in Figure 3.1, and

a 2442-node topology, gathered from a smart meter network deployment, were used in

the simulations. For scalability and comparative analysis in this chapter and the next,

another outdoor depoyed network with 86 nodes as shown in Figure 3.2, has been used. In

Figure 3.1 and in Figure 3.2, links between a most preferred parent node and child nodes

are shown in red. Links that are shown in black are also part of the topology but are not

between a preferred parent and child node. Note that this is just a start to validate the

simulation before using large-scale networks.

A set of time-varying link quality data was gathered from a real network deployment

to form a database used for the simulations. Each link in the topology randomly ‘picks

up’ a link model (trace) from the database. Each link has a Packet Delivery Ratio (PDR)

3. RPL: PERFORMANCE EVALUATION 25

Figure 3.1: Outdoor Network Topology with 45 Nodes.

that varies with time (in the simulation, a new PDR is read from the database every 10

minutes) according to the gathered data. Packets are dropped randomly from that link

with probability (1− PDR). Each time a packet is about to be sent, the module generates

a random number using the Mersenne Twister random number generation method.

The random number is compared to the PDR to determine whether the packet should

be dropped. Note that each link uses a different random number generator to maintain

true randomness in the simulator and to avoid correlation between links. Also, the packet

drop applies to all kinds of data and control packets (RPL), such as the DIO, DAO,

and DIS packets defined in the RPL standard (15). Figure 3.3 shows a typical temporal

characteristic of links from the outdoor network shown in Figure 3.2 and is used in the

simulations. The figure shows several links with perfect connectivity, some links with a

PDR as low as 10%, and several for which the PDR may vary from 30% to 80%, sharply

changing back and forth between a high value (strong connectivity) and a low value (weak

3. RPL: PERFORMANCE EVALUATION 26

Figure 3.2: Outdoor Network Topology with 86 Nodes.

connectivity). For the large smart grid networks, however, the link temporal variation has

been found less than the outdoor network. Nevertheles, we use the link data corresponding

only to the particular deployment to preserve authenticity of the simulated network.

In the RPL simulator, the LBR (LLN Border Router) or the Directed Acyclic Graph

(DAG) root first initiates sending out DIO messages, and the DAG is gradually con-

structed. RPL makes use of trickle timers: the protocol sets a minimum time period with

which the nodes start re-issuing DAOs, and this minimum period is denoted by the trickle

parameter Imin. RPL also sets an upper limit on how many times this time period can be

doubled; this is denoted by the parameter DIOIntervalDoublings, as defined in RFC 6550

(15). For the simulation, Imin is initially set to 1 second and DIOIntervalDoublings is

equal to 16, and therefore the maximum time between two consecutive DIO emissions by a

node (under a steady network condition) is 18.2 hours. The trickle time interval for emit-

ting DIO messages assumes the initial value of 1 second and then changes over simulation

time, as mentioned in RFC 6206 (38). Another objective of this study is to give insight

3. RPL: PERFORMANCE EVALUATION 27

0 5 10 15 20 25
30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 P

D
R

Time in Hours

Sample Link Characteristics

Link:25−8

Link:24−32

Link:32−0

Figure 3.3: Example of Link Characteristics.

to the network administrator on how to tweak the trickle values. These recommendations

could then be used in applicability statement documents.

Each node in the network, other than the LBR or DAG root, also emits DAO messages

as specified in the RPL standard (15), to initially populate the routing tables with the

prefixes received from children via the DAO messages to support Point-to-Point (P2P) and

Point-to-Multipoint (P2MP) traffic in the “down” direction. During these simulations, it

is assumed that each node is capable of storing route information for other nodes in the

network (storing mode of RPL).

For nodes implementing RPL, as expected, the routing table memory requirement

varies according to the position in the DODAG (Destination-Oriented DAG). The (worst-

case) assumption is made that there is no route summarization (aggregation) in the net-

work. Thus, a node closer to the DAG will have to store more entries in its routing table.

It is also assumed that all nodes have equal memory capacity to store the routing states.

For simulations of the indoor network, each node sends traffic according to a Constant

Bit Rate (CBR) to all other nodes in the network, over the simulation period. Each node

3. RPL: PERFORMANCE EVALUATION 28

generates a new data packet every 10 seconds. Each data packet has a size of 127 bytes

including 802.15.4 PHY/MAC headers and RPL packet headers. All control packets are

also encapsulated with 802.15.4 PHY/MAC headers. To simulate a more realistic scenario,

80% of the packets generated by each node are destined to the root, and the remaining 20%

of the packets are uniformly assigned as destined to nodes other than the root. Therefore,

the root receives a considerably larger amount of data than other nodes. These values

may be revised when studying P2P traffic so as to have a majority of traffic going to all

nodes as opposed to the root. In the later part of the simulation, a typical home/building

routing scenario is also simulated, and different path quality metrics are computed for

that traffic pattern. The packets are routed through the DODAG built by RPL according

to the mechanisms specified in RFC 6550 (15).

A number of RPL parameters are varied (such as the packet rate from each source and

the time period for emitting a new DAG sequence number) to observe their effect on the

performance metric of interest.

3.1.1 Common assumptions

As the DAO messages are used to feed the routing tables in the network, they grow with

time and size of the network. Nevertheless, no constraint was imposed on the size of the

routing table nor on how much information the node can store. The routing table size is

not expressed in terms of Kbytes of memory usage but measured in terms of the number

of entries for each node. Each entry has the next-hop node and path cost associated with

the destination node. The link ETX (Expected Transmission Count) metric is used to

build the DODAG and is specified in RFC 6551 (35).

3.2 Performance Evaluation in Small Network

3.2.1 Path quality

Hop Count: For each source-destination pair, the number of hops for both RPL and

shortest path routing is computed. Shortest path routing refers to a hypothetical

3. RPL: PERFORMANCE EVALUATION 29

ideal routing protocol that would always provide the shortest path in terms of ETX

path cost (or whichever metric is used) in the network.

The Cumulative Distribution Function (CDF) of the hop count for all paths (n∗(n−

1) in an n-node network) in the network with respect to the hop count is plotted in

Figure 3.4 for both RPL and shortest path routing. One can observe that the CDF

corresponding to 4 hops is around 80% for RPL and 90% for shortest path routing.

In other words, for the given topology, 90% of the paths have a path length of 4

hops or less with an ideal shortest path routing methodology, whereas in RPL P2P

routing, 90% of the paths will have a length of no more than 5 hops. This result

indicates that despite having a non-optimized P2P routing scheme, the path quality

of RPL is close to an optimized P2P routing mechanism for the topology and the

traffic under consideration. Another reason for this may relate to the fact that the

DAG root is at the center of the network shown in Figure 3.1; thus, routing through

the DAG root is often close to an optimal (shortest path) routing. This result may

be different in a topology where the DAG root is located at one end of the network.

ETX Path Cost: In the simulation, the total ETX path cost (Expected Transmission

Count) from source to destination for each packet is computed.

Figure 3.5 shows the CDF of the total ETX path cost, both with RPL and shortest

path routing. Here also one can observe that the ETX path cost from all sources

to all destinations is close to that of shortest path routing for the network.

Path Stretch: The path stretch metric encompasses the stretch factor for both hop

distance and ETX path cost. The hop distance stretch, which is determined as the

difference between the number of hops taken by a packet while following a route

built via RPL and the number of hops taken by shortest path routing (using link

ETX as the metric), is computed. The ETX path cost stretch is also provided.

The CDF of both path stretch metrics is plotted against the value of the correspond-

ing path stretch over all packets in Figures 3.6 and 3.7, for hop distance stretch and

3. RPL: PERFORMANCE EVALUATION 30

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Hop Distance

C
D

F
 i
n
 %

a
g
e

Comparison of Hop Distance for RPL and Ideal Shortest Path

RPL

Shortest Path

Figure 3.4: CDF of Hop Count versus Hop Count.

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

ETX Metric Distance

C
D

F
 i
n

 %
a

g
e

Comparison of ETX Metric Distance for RPL and Ideal Shortest Path

RPL

Shortest Path

Figure 3.5: CDF of Total ETX Path Cost along Path versus ETX Path Cost.

3. RPL: PERFORMANCE EVALUATION 31

ETX path stretch, respectively. It can be observed that, for a few packets, the

path built via RPL has fewer hops than the ideal shortest path where path ETX is

minimized along the DAG. This is because there are a few source-destination pairs

where the total ETX path cost is equal to or less than that of the path provided by

RPL, when the packet takes a longer hop count for the ideal shortest path. As the

RPL implementation ignores a 20% change in total ETX path cost before switching

to a new parent or emitting a new DIO, it does not necessarily provide the shortest

path in terms of total ETX path cost. Thus, this implementation yields a few paths

with smaller hop counts but larger (or equal) total ETX path cost.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Average Hop Distance Stretch

C
D

F
 i
n
 %

a
g
e

Average Hop Distance Stretch between Ideal Shortest Path and Path via RPL

Figure 3.6: CDF of Hop Distance Stretch versus Hop Distance Stretch Value.

The data for the CDF of the hop count and ETX path cost for the ideal shortest path

(SP) and a path built via RPL, along with the CDF of the routing table size, is given

below in Table 3.1. Figures 3.4 to 3.8 relate to the data in this table.

3. RPL: PERFORMANCE EVALUATION 32

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

Average Metric Distance Stretch

C
D

F
 i
n

 %
a
g

e

Average Metric Distance Stretch between Ideal Shortest Path and Path via RPL

Figure 3.7: CDF of ETX Path Stretch versus ETX Path Stretch Value.

Overall, the path quality metrics give us important information about the protocol’s

performance when minimizing the ETX path cost is the objective to form the DAG. The

protocol, as explained, does not always provide an optimum path, especially for peer-to-

peer communication. However, it does end up reducing the control overhead cost, thereby

reducing unnecessary parent selection and DIO message forwarding events, by choosing a

non-optimized path. Despite this specific implementation technique, around 30% of the

packets travel the same number of hops as an ideal shortest path routing mechanism, and

20% of the packets experience the same number of attempted transmissions to reach the

destination. On average, this implementation costs only a few extra transmission attempts

and saves a large number of control packet transmissions.

3.2.2 Routing table size

The objective of this metric is to observe the distribution of the number of entries per

node. Figure 3.8 shows the CDF of the number of routing table entries for all nodes.

Note that 90% of the nodes need to store less than 10 entries in their routing table for the

topology under study. The LBR does not have the same power or memory constraints as

3. RPL: PERFORMANCE EVALUATION 33

CDF Hop Hop ETX Cost ETX Cost Routing
(%age) (SP) (RPL) (SP) (RPL) Table Size

0 1.0 1.0 1 1.0 0
5 1.0 1.03 1 1.242 1
10 2.0 2.0 2 2.048 2
15 2.0 2.01 2 2.171 2
20 2.0 2.06 2 2.400 2
25 2.0 2.11 2 2.662 3
30 2.0 2.42 2 2.925 3
35 2.0 2.90 3 3.082 3
40 3.0 3.06 3 3.194 4
45 3.0 3.1 3 3.41 4
50 3.0 3.15 3 3.626 4
55 3.0 3.31 3 3.823 5
60 3.0 3.50 3 4.032 6
65 3.0 3.66 3 4.208 7
70 3.0 3.92 4 4.474 7
75 4.0 4.16 4 4.694 7
80 4.0 4.55 4 4.868 8
85 4.0 4.70 4 5.091 9
90 4.0 4.89 4 5.488 10
95 4.0 5.65 5 5.923 12
100 5.0 7.19 9 10.125 44

Table 3.1: Path Quality CDFs.

regular nodes do, and hence it can accommodate entries for all the nodes in the network.

The requirement to accommodate devices with low storage capacity has been mandated

for Industrial, Home and Building Automation LLNs in RFC 5673, RFC 5826, and RFC

5867 (5, 6, 16). However, when RPL is implemented in storing mode, some nodes closer

to the LBR or DAG root will require more memory to store larger routing tables. To

implement storing mode while deploying RPL, in this case will need to accommodate

maximum routing table size for all nodes but the LBR. One can also implement a mixture

of storing and non-storing mode of implementation, but it is outside the scope of this

chapter to discuss the pathogy arising due to a topology of mixed Mode of Operations

(MoP)

3. RPL: PERFORMANCE EVALUATION 34

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

Routing Table Size

C
D

F
 i
n
 %

a
g
e

CDF of Routing Table Size with Number of Nodes

Figure 3.8: CDF of Routing Table Size with Respect to Number of Nodes.

3.2.3 Delay bound for P2P routing

For delay-sensitive applications, such as home and building automation, it is critical to

optimize the end-to-end delay. Figure 3.9 shows the upper bound and distributions of

delay for paths between any two given nodes for different hop counts between the source

and destination. Here, the hop count refers to the number of hops a packet travels to

reach the destination when using RPL paths. This hop distance does not correspond to

the shortest path distance between two nodes. Note that each packet has a length of

127 bytes, with a 240-kbps radio, which makes the transmission delay approximately 4

milliseconds (ms).

Industrial and Urban LLN requirements in RFCs 5673 and 5548 (6, 7) mention a

requirement for the end-to-end delivery delay to remain within a bounded latency. For

instance, according to the industrial routing requirement, non-critical closed-loop applica-

tions may have a latency requirement that can be as low as 100 ms, whereas monitoring

services may tolerate a delay in the order of seconds. The results show that about 99%

of the end-to-end communication (where the maximum hop count is 7 hops) is bounded

3. RPL: PERFORMANCE EVALUATION 35

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Delay (in Seconds)

C
D

F
 o

f
D

e
la

y
 i
n

 %
a

g
e

Comparison of End−to−End Latency for Different Hop Counts

< 2 hops

3−4 hops

>=5 hops

Figure 3.9: Comparison of Packet Latency, for Different Path Lengths, Expressed in Hop
Count.

within the 100-ms requirement, for the topology under study. It should be noted that due

to poor link condition, there may be packet drops triggering retransmission, which may

cause larger end-to-end delivery delays. Nodes in the proximity of the LBR may become

congested at high traffic loads, which can also lead to higher end-to-end delay.

3.2.4 Control packet overhead

The control plane overhead is an important routing characteristic in LLNs. It is imperative

to bound the control plane overhead. One of the distinctive characteristics of RPL is that

it makes use of trickle timers so as to reduce the number of control plane packets by

eliminating redundant messages. The aim of this performance metric is thus to analyze

the control plane overhead both in stable conditions (no network element failure overhead)

and in the presence of failures.

Data and control plane traffic comparison for each node: Figure 3.10 shows the compar-

ison between the amount of data packets transmitted (including forwarded packets)

3. RPL: PERFORMANCE EVALUATION 36

0 5 10 15 20 25 30 35 40 45
10

2

10
3

10
4

10
5

10
6

Node Id

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

Comparison of Data Packets and Control Packets Transmitted by Each Node

Data Packets

Control Packets

Figure 3.10: Amount of Data and Control Packets Transmitted against Node Id Using Link
ETX as Routing Metric.

and control packets (DIO and DAO messages) transmitted for all individual nodes

when link ETX is used to optimize the DAG. As mentioned earlier, each node gen-

erates a new data packet every 10 seconds. Here one can observe that a considerable

amount of traffic is routed through the DAG root itself. The x axis indicates the

node ID in the network. Also, as expected, the nodes that are closer to the DAG

root and that act as routers (as opposed to leaves) handle much more data traffic

than other nodes. Nodes 12, 36, and 38 are examples of nodes next to the DAG

root, taking part in routing most of the data packets and hence having many more

data packet transmissions than other nodes, as observed in Figure 3.10. We can

also observe that the proportion of control traffic is negligible for those nodes. This

result also reinforces the fact that the amount of control plane traffic generated by

RPL is negligible on these topologies. Leaf nodes have comparable amounts of data

and control packet transmissions (they do not take part in routing the data).

Data and control packet transmission with respect to time: In Figures 3.11, 3.12, and

3. RPL: PERFORMANCE EVALUATION 37

3.13, the amount of data and control packets transmitted for node 12 (low rank

in DAG, closer to the root), node 43 (in the middle), and node 31 (leaf node) are

shown, respectively. These values stand for the number of data and control packets

transmitted for each 10-minute interval for the particular node, to help understand

what the ratio is between data and control packets exchanged in the network. One

can observe that nodes closer to the DAG root have a higher proportion of data

packets (as expected), and the proportion of control traffic is negligible in comparison

with the data traffic. Also, the amount of data traffic handled by a node within a

given interval varies largely over time for a node closer to the DAG root, because

in each interval the destination of the packets from the same source changes, while

20% of the packets are destined to nodes other than the DAG root. As a result, the

pattern of the traffic that is handled changes widely in each interval for the nodes

closer to the DAG root. For the nodes that are farther away from the DAG root,

the ratio of data traffic to control traffic is smaller, since the amount of data traffic

is greatly reduced.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

500

1000

1500

2000

2500

3000

3500

Time (in Seconds)

N
u

m
b

e
r

o
f

P
a

c
k
e

ts
 i
n

 E
a

c
h

 1
0

−
m

in

Number of Packets Transmitted by Node 12 (1 hop) in Each 10−min Interval

Data Packets

Control Packets

Figure 3.11: Amount of Data and Control Packets Transmitted for Node 12.

3. RPL: PERFORMANCE EVALUATION 38

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

50

100

150

200

250

300

350

400

450

Time (in Seconds)

N
u

m
b

e
r

o
f

P
a

c
k
e

ts
 i
n

 E
a

c
h

 1
0

−
m

in

Number of Packets Transmitted by Node 43 (2 hops) in Each 10−min Interval

Data Packets

Control Packets

Figure 3.12: Amount of Data and Control Packets Transmitted for Node 43.

The control traffic load exhibits a wave-like pattern with respect to time. The amount

of control packets for each node drops quickly as the DODAG stabilizes, due to the effect of

trickle timers. However, when a new DODAG sequence is advertised (global repair of the

DODAG), the trickle timers are reset and the nodes start emitting DIOs frequently again

to rebuild the DODAG. For a node closer to the DAG root, the amount of data packets is

much larger than that of control packets and somewhat oscillatory around a mean value.

The amount of control packets exhibits a ‘saw-tooth’ behavior. In the case where the ETX

link metric is used, when the PDR changes, the ETX link metric for a node to its child

changes, which may lead to choosing a new parent and changing the DAG rank of the

child. This event resets the trickle timer and triggers the emission of a new DIO. Also, the

issue of a new DODAG sequence number triggers DODAG re-computation and resets the

trickle timers. Therefore, one can observe that the number of control packets attains a

high value for one interval and comes down to lower values for subsequent intervals. The

interval with a high number of control packets denotes the interval where the timers to

emit a new DIO are reset more frequently. As the network stabilizes, the control packets

3. RPL: PERFORMANCE EVALUATION 39

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

10

20

30

40

50

60

70

Time (in Seconds)

N
u
m

b
e
r

o
f
P

a
c
k
e
ts

 i
n
 E

a
c
h
 1

0
−

m
in

Number of Packets Transmitted by Node 31 (leaf) in Each 10−min Interval

Data Packets

Control Packets

Figure 3.13: Amount of Data and Control Packets Transmitted for Node 31.

are less dense in volume. For leaf nodes, the amount of control packets is comparable to

that of data packets, as leaf nodes are more prone to face changes in their DODAG rank

as opposed to nodes closer to the DAG root when the link ETX value in the topology

changes dynamically. At the same time, the amount of data packet handled by leaf nodes

depends only on data generated by themselves, thus smaller in compared to that handled

by a node in the middle of the DAG.

3.2.5 Loss of connectivity

Upon link failures, a node may lose its parents – preferred and backup (if any) – thus

leading to a loss of connectivity (no path to the DAG root). RPL specifies two mechanisms

for DODAG repairs, referred to as global repair and local repair. In this section, simulation

results are presented to evaluate the amount of time data packets are dropped due to a loss

of connectivity. The following two scenarios of maintenance mechanisms are considered:

3. RPL: PERFORMANCE EVALUATION 40

a) when only using global repair (i.e., the DODAG is rebuilt thanks to the emission of new

DODAG sequence numbers by the DAG root), and b) when using local repair (poisoning

the sub-DAG in case of loss of connectivity) in addition to global repair. The idea is to

tune the frequency at which new DODAG sequence numbers are generated by the DAG

root, and also to observe the effect of varying the frequency for global repair and the

concurrent use of global and local repair. It is expected that more frequent increments of

DODAG sequence numbers will lead to a shorter duration of connectivity loss at a price

of a higher rate of control packets in the network. For the use of both global and local

repair, the simulation results show the trade-off in amount of time that a node may remain

without service and total number of control packets.

Figure 3.14 shows the CDF of time spent by any node without service, when the

data packet rate is one packet every 10 seconds and a new DODAG sequence number is

generated every 10 minutes. This plot reflects the property of global repair without any

local repair scheme. When all the parents are temporarily unreachable from a node, the

time before it hears a DIO from another node with a path to the DAG root is recorded,

which gives the time without service. We define the DAG repair timer as the interval

at which the LBR increments the DAG sequence number, thus triggering a global re-

optimization. In some cases, this value might go up to the DAG repair timer value,

because until a DIO is heard, the node does not have a parent and hence no route to the

LBR or other nodes not in its own sub-DAG. Clearly, this situation indicates a lack of

connectivity and loss of service for the node.

The effect of the DAG repair timer on time without service is plotted in Figure 3.15,

where the source rate is 20 seconds/packet and in Figure 3.16, where the source sends a

packet every 10 seconds.

The data for Figures 3.14 and 3.16 can be found in Table 3.2. The table shows how

the CDF of time without connectivity to the LBR increases while we increase the time

period to emit new DAG sequence numbers, when the nodes generate a packet every 10

seconds.

3. RPL: PERFORMANCE EVALUATION 41

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

90

100

Time Without Service (in Seconds)

C
D

F
 i
n

 %
a

g
e

CDF of Timespan During Which No Path is Found, Repair Period 10 Minutes

Figure 3.14: CDF: Loss of Connectivity with Global Repair.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

C
D

F
 i
n
 %

a
g
e

Failure Time Value (in Seconds)

Comparison of Failure Time, Source Rate = 20 Seconds/Packet

Repair Timer = 10 min

Repair Timer = 30 min

Repair Timer = 60 min

Figure 3.15: CDF: Loss of Connectivity for Different Global Repair Period, Source Rate 20
Seconds/Packet.

3. RPL: PERFORMANCE EVALUATION 42

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

C
D

F
 i
n

 %
a

g
e

Failure Time Value (in Seconds)

Comparison of Failure Time, Source rate 10 Seconds / Packet

Repair Timer = 10 min

Repair Timer = 30 min

Repair Timer = 60 min

Figure 3.16: CDF: Loss of Connectivity for Different Global Repair Period, Source Rate 10
Seconds/Packet.

The data for Figure 3.15 can be found in Table 3.3. The table shows how the CDF of

time without connectivity to the LBR increases while we increase the time period to emit

new DAG sequence numbers, when the nodes generate a packet every 20 seconds.

Figure 3.17 shows the effect of the DAG global repair timer period on control traffic. As

expected, as the frequency at which new DAG sequence numbers are generated increases,

the amount of control traffic decreases because DIO messages are sent less frequently to

rebuild the DODAG. However, reducing the control traffic comes at a price of increased

loss of connectivity when only global repair is used.

From the above results, it is clear that the time the protocol takes to re-establish

routes and to converge, after an unexpected link or device failure happens, is fairly long.

Home automation routing requirements in RFC 5826 mandates that “the routing protocol

MUST converge within 0.5 seconds if no nodes have moved”. Clearly, implementation

of a repair mechanism based on new DAG sequence numbers alone would not meet the

requirements. Hence, a local repair mechanism, in the form of poisoning the sub-DAG

and issuing a DIS, has been adopted.

3. RPL: PERFORMANCE EVALUATION 43

CDF Repair Period Repair Period Repair Period
(%age) 10 Minutes 30 Minutes 60 Minutes

0 0.464 0.045 0.027
5 0.609 0.424 0.396
10 1.040 1.451 0.396
15 1.406 3.035 0.714
20 1.934 3.521 0.714
25 2.113 5.461 1.856
30 3.152 5.555 1.856
35 3.363 7.756 6.173
40 4.9078 8.604 6.173
45 8.575 9.181 14.751
50 9.788 21.974 14.751
55 13.230 30.017 14.751
60 17.681 31.749 16.166
65 29.356 68.709 16.166
70 34.019 92.974 302.459
75 49.444 117.869 302.459
80 75.737 133.653 488.602
85 150.089 167.828 488.602
90 180.505 271.884 488.602
95 242.247 464.047 488.602
100 273.808 464.047 488.602

Table 3.2: Loss of Connectivity Time, Data Rate - 10 Seconds / Packet.

The effect of the DAG repair timer on time without service when local repair is

activated is now observed and plotted in Figure 3.18, where the source rate is 20 sec-

onds/packet. A comparison of the CDF of loss of connectivity for the global repair mech-

anism and the global + local repair mechanism is shown in Figures 3.19 and 3.20 (semi-log

plots, x axis in logarithmic scale and y axis in linear scale), where the source generates

a packet every 10 seconds and 20 seconds, respectively. For these plots, the x axis shows

time in log scale, and the y axis denotes the corresponding CDF in linear scale. One can

observe that using local repair (with poisoning of the sub-DAG) greatly reduces loss of

connectivity.

A comparison between the amount of control plane overhead used for global repair only

and for the global plus local repair mechanism is shown in Figure 3.21, which highlights the

3. RPL: PERFORMANCE EVALUATION 44

CDF Repair Period Repair Period Repair Period
(%age) 10 Minutes 30 Minutes 60 Minutes

0 0.071 0.955 0.167
5 0.126 2.280 1.377
10 0.403 2.926 1.409
15 0.902 3.269 1.409
20 1.281 16.623 3.054
25 2.322 21.438 5.175
30 2.860 48.479 5.175
35 3.316 49.495 10.30
40 3.420 93.700 25.406
45 6.363 117.594 25.406
50 11.500 243.429 34.379
55 19.703 277.039 102.141
60 22.216 284.660 102.141
65 39.211 285.101 328.293
70 63.197 376.549 556.296
75 88.986 443.450 556.296
80 147.509 452.883 1701.52
85 154.26 653.420 2076.41
90 244.241 720.032 2076.41
95 518.835 1760.47 2076.41
100 555.57 1760.47 2076.41

Table 3.3: Loss of Connectivity Time, Data Rate - 20 Seconds / Packet.

improved performance of RPL in terms of convergence time at very little extra overhead.

From Figure 3.20, in 85% of the cases the protocol finds connectivity to the LBR for the

concerned nodes within a fraction of seconds when local repair is employed. Using only

global repair leads to repair periods of 150-154 seconds, as observed in Figures 3.14 and

3.15.

3.3 RPL in a Building Automation Routing Scenario

Unlike the previous traffic pattern, where a majority (80%) of the total traffic generated

by any node is destined to the root, this section considers a different traffic pattern, which

is more prominent in a home or building routing scenario. In the simulations shown below,

the nodes send 60% of their total generated traffic to the physically 1-hop distant node

3. RPL: PERFORMANCE EVALUATION 45

0 5 10 15 20 25 30 35 40 45
100

200

300

400

500

600

700

800

900

1000

1100

Node Id

N
u

m
b

e
r

o
f

C
o

n
tr

o
l
P

a
c
k
e

ts

Comparison of Control Overhead, Source Rate = 20 Seconds/Packet

Repair Timer = 10 min

Repair Timer = 60 min

Repair Timer = 30 min

Figure 3.17: Amount of Control Traffic for Different Global Repair Periods.

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 i
n

 %
a

g
e

Time Without Service (in Seconds)

Comparison of Connectionless Time, Source Rate − 20 Seconds / Packet

Repair Timer = 10 min

Repair Timer = 30 min

Repair Timer = 60 min

Figure 3.18: CDF: Loss of Connectivity for Different DAG Repair Timer Values for
Global+Local Repair, Source Rate 20 Seconds/Packet.

3. RPL: PERFORMANCE EVALUATION 46

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

Time Without Service (in Seconds)

C
D

F
 i
n
 %

a
g
e

Comparison of Connectionless Time, Source Rate − 10 Seconds / Packet

local rep−10 min

global rep−10 min

local rep−60 min

global rep−60 min

Figure 3.19: CDF: Loss of Connectivity for Global Repair and Global+Local Repair, Source
Rate 10 Seconds/Packet.

and 20% of traffic to a 2-hop distant node; the other 20% of traffic is distributed among

other nodes in the network. The CDF of path quality metrics such as hop count, ETX

path cost, average hop distance stretch, ETX path stretch, and delay for P2P routing

for all pairs of nodes is calculated. Maintaining a low delay bound for P2P traffic is of

high importance, as applications in home and building routing typically have low delay

tolerance.

3.3.1 Path quality

Figure 3.22 shows the CDF of the hop count for both RPL and ideal shortest path routing

for the traffic pattern described above. Figure 3.23 shows the CDF of the expected number

of transmissions (ETX) for each packet to reach its destination. Figures 3.24 and 3.25 show

the CDF of the stretch factor for these two metrics. To illustrate the stretch factor, an

example from Figure 3.25 will be given next. For all paths built by RPL, 85% of the time,

the path cost is less than the path cost for the ideal shortest path plus one.

3. RPL: PERFORMANCE EVALUATION 47

10
−2

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

Time Without Service (in Seconds)

C
D

F
 i
n
 %

a
g
e

Comparison of Connectionless Time, Source Rate − 20 Seconds / Packet

local rep−10 min

global rep−10 min

local rep−60 min

global rep−60 min

Figure 3.20: CDF: Loss of Connectivity for Global Repair and Global+Local Repair, Source
Rate 20 Seconds/Packet.

0 5 10 15 20 25 30 35 40 45
0

200

400

600

800

1000

1200

Node Id

N
u

m
b

e
r

o
f

C
o

n
tr

o
l
P

a
c
k
e

ts

Comparison of Control Overhead, Source Rate − 20 Seconds / Packet

Repair Timer = 10 min,global

Repair Timer = 10 min

Repair Timer = 60 min,global

Repair Timer = 60 min

Figure 3.21: Number of Control Packets for Different DAG Sequence Number Period, for
Both Global Repair and Global+Local Repair.

3. RPL: PERFORMANCE EVALUATION 48

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Hop Distance

C
D

F
 i
n
 %

a
g
e

Comparison of Hop Distances for Shortest Path and RPL

RPL

SP

Figure 3.22: CDF of End-to-End Hop Count for RPL and Ideal Shortest Path in Home
Routing.

3.3.2 Delay

To get an idea of maximum observable delay in the above-mentioned traffic pattern, the

delay for different numbers of hops to the destination for RPL is considered. Figure 3.26

shows how the end-to-end packet latency is distributed for different packets with different

hop counts in the network.

For this deployment scenario, 60% of the traffic has been restricted to a 1-hop neigh-

borhood. Hence, intuitively, the protocol is expected to yield path qualities that are close

to those of ideal shortest path routing for most of the paths. From the CDF of the hop

count and ETX path cost, it is clear that peer-to-peer paths are more often closer to an

ideal shortest path. The end-to-end delay for distances within 2 hops is less than 60 ms for

99% of the delivered packets, while packets traversing 5 hops or more are delivered within

100 ms 99% of the time. These results demonstrate that for a normal routing scenario

of an LLN deployment in a building, RPL performs fairly well without incurring much

control plane overhead, and it can be applied for delay-critical applications as well.

3. RPL: PERFORMANCE EVALUATION 49

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Average Metric Distance

C
D

F
 i
n
 %

a
g
e

Comparison of Metric Distances for Shortest Path and RPL

RPL

SP

Figure 3.23: CDF of ETX Path Cost Metric for RPL and Ideal Shortest Path in Home
Routing.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Average Hop Distance Stretch

C
D

F
 i
n

 %
a

g
e

Comparison of Hop Distance Stretch between Ideal Shortest Path and Path via RPL

Figure 3.24: CDF of Hop Distance Stretch from Ideal Shortest Path.

3. RPL: PERFORMANCE EVALUATION 50

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

80

90

100

Average Metric Distance Stretch

C
D

F
 i
n
 %

a
g
e

Comparison of Metric distance Stretch between Ideal Shortest Path and Path via RPL

Figure 3.25: CDF of ETX Metric Stretch from Ideal Shortest Path.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

50

60

70

80

90

100

Delay (in Seconds)

C
D

F
 o

f
D

e
la

y
 i
n

 %
a

g
e

Comparison of End−to−End Latency for Different Hop Counts

< 2 hops

3−4 hops

>=5 hops

Figure 3.26: Packet Latency for Different Hop Counts in RPL.

3. RPL: PERFORMANCE EVALUATION 51

3.4 RPL in a Large-Scale Network

In this section, we focus on simulating RPL in a large network and study its scalability by

focusing on a few performance metrics: the latency and path cost stretch, and the amount

of control packets. The 2442-node smart meter network with its corresponding link traces

was used in this scalability study. To simulate a more realistic scenario for a smart meter

network, 100% of the packets generated by each node are destined to the root. Therefore,

no traffic is destined to nodes other than the root.

3.4.1 Path quality

To investigate RPL’s scalability, the CDF of the ETX path cost in the large-scale smart

meter network is compared to a hypothetical ideal shortest path routing protocol that

minimizes the total ETX path cost (Figure 3.27). In this simulation, the path stretch is

also calculated for each packet that traverses the network. The path stretch is determined

as the difference between the path cost taken by a packet while following a route built

via RPL and a path computed using an ideal shortest path routing protocol. The CDF

of the ETX fractional stretch, which is determined as the ETX metric stretch value over

the ETX path cost of an ideal shortest path, is plotted in Figure 3.28. The fractional hop

distance stretch value, as defined in the Terminology section, is shown in Figure 3.29.

Looking at the path quality plots, it is obvious that RPL works in a non-optimal fashion

in this deployment scenario as well. However, on average, for each source-destination

pair, the ETX fractional stretch is limited to 30% of the ideal shortest path cost. This

fraction is higher for paths with shorter distances and lower for paths where the source and

destination are far apart. The negative stretch factor for the hop count is an interesting

feature of this deployment and is due to RPL’s decision to not switch to another parent

where the improvement in path quality is not significant. As mentioned previously, in this

implementation, a node will only switch to a new parent if the advertised ETX path cost

to the LBR through the new candidate parent is 20% better than the old one. The nodes

tend to hear DIOs from a smaller hop count first, and later do not always shift to a larger

3. RPL: PERFORMANCE EVALUATION 52

hop count and smaller ETX path cost. As the traffic is mostly to the DAG root, some

P2P paths built via RPL do yield a smaller hop count from source to destination, albeit

at a larger ETX path cost.

As observed in Figure 3.27, 90% of the packets transmitted during the simulation have

a (shortest) ETX path cost to destination less than or equal to 12. However, via RPL,

90% of the packets will follow paths that have a total ETX path cost of up to 14. Though

all packets are destined to the LBR, it is to be noted that this implementation ignores

a change of up to 20% in total ETX path cost. Figures 3.28 and 3.29 indicate that all

paths have a very low ETX fractional stretch factor as far as the total ETX path cost is

concerned, and some of the paths have lower hop counts to the LBR or DAG root as well

when compared to the hop count of the ideal shortest path.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Metric Distance

C
D

F
 i
n

 %
a

g
e

Comparison of ETX Metric Distances for Shortest Path and RPL

RPL

SP

Figure 3.27: CDF of Total ETX Path Cost versus ETX Path Cost.

3. RPL: PERFORMANCE EVALUATION 53

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

100

Average Fractional Metric Distance Stretch

C
D

F
 i
n
 %

a
g
e

Comparison of Fractional Metric Distance Stretch between Ideal Shortest Path and Path via RPL

Figure 3.28: CDF of ETX Fractional Stretch versus ETX Fractional Stretch Value.

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
0

10

20

30

40

50

60

70

80

90

100

Average Fractional Hop Distance Stretch

C
D

F
 i
n
 %

a
g
e

Comparison of Fractional Hop Distance Stretch between Ideal Shortest Path and Path via RPL

Figure 3.29: CDF of Fractional Hop Count Stretch.

3. RPL: PERFORMANCE EVALUATION 54

3.4.2 Delay

Figure 3.30 shows how end-to-end packet latency is distributed for different hop counts

in the network. According to RFC 5548, Urban LLNs (U-LLNs) are delay tolerant, and

the information, except for critical alarms, should arrive within a fraction of the reporting

interval (within a few seconds). The packet generation for this deployment has been set

higher than usual to incur high traffic volume, and nodes generate data once every 30

seconds. However, the end-to-end latency for most of the packets is condensed between

500 ms and 1 s, where the upper limit corresponds to packets traversing longer (greater

than or equal to 6 hops) paths.

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

Delay (in Seconds)

C
D

F
 o

f
D

e
la

y
 i
n

 %
a

g
e

Comparison of End−to−End Latency for Different Hop Counts

<= 2 hops

3−5 hops

>=6 hops

Figure 3.30: End-to-End Packet Delivery Latency for Different Hop Counts.

3. RPL: PERFORMANCE EVALUATION 55

3.4.3 Control packet overhead

Figure 3.31 shows the comparison between data packets (originated and forwarded) and

control packets (DIO and DAO messages) transmitted by each node (link ETX is used as

the routing metric). Here one can observe that in spite of the large scale of the network,

the amount of control traffic in the protocol is negligible in comparison to data packet

transmission. The smaller node ID for this network actually indicates closer proximity to

the DAG root, and nodes with high ID numbers are actually farther away from the DAG

root. Also, as expected, we can observe in Figures 3.32, 3.33, and 3.34 that the (non-

leaf) nodes closer to the DAG root have many more data packet transmissions than other

nodes. The leaf nodes have comparable amounts of data and control packet transmissions,

as they do not take part in routing the data. As seen before, the data traffic for a child node

has much less variation than the nodes that are closer to the DAG root. This variation

decreases with increase in DAG depth. In this topology, Nodes 1, 2, and 3, etc., are direct

children of the LBR.

0 500 1000 1500 2000 2500
10

2

10
3

10
4

10
5

10
6

Node Id

N
u
m

b
e
r

o
f
P

a
c
k
e
ts

Comparison of Data and Control Overhead

Data Packets

Control Packets

Figure 3.31: Data and Control Packet Comparison.

3. RPL: PERFORMANCE EVALUATION 56

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (in Seconds)

N
u
m

b
e
r

o
f
P

a
c
k
e
ts

 i
n
 E

a
c
h
 1

0
−

m
in

Number of Packets Transmitted by Node 10 (1 hop) in Each 10−min Interval

Data Packets

Control Packets

Figure 3.32: Data and Control Packets over Time for Node 1.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

100

200

300

400

500

600

Time (in Seconds)

N
u
m

b
e
r

o
f

P
a
c
k
e
ts

 i
n

 E
a

c
h
 1

0
−

m
in

Number of Packets Transmitted by Node 78 (middle) in Each 10−min Interval

Data Packets

Control Packets

Figure 3.33: Data and Control Packets over Time for Node 78.

3. RPL: PERFORMANCE EVALUATION 57

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

5

10

15

20

25

Time (in Seconds)

N
u

m
b

e
r

o
f

P
a

c
k
e

ts
 i
n

 E
a

c
h

 1
0

−
m

in

Number of Packets Transmitted by Node 300 (leaf) in Each 10−min Interval

Data Packets

Control Packets

Figure 3.34: Data and Control Packets over Time for Node 300.

3.5 Scaling Property, Parameter Configuration and Routing

Stability

An important metric of interest is the maximum load experienced by any node (CPU

usage) in terms of the number of control packets transmitted by the node. Also, to get

an idea of scaling properties of RPL in large-scale networks, it is also key to analyze the

number of packets handled by the RPL nodes for networks of different sizes.

In these simulations, at any given interval, the node with maximum control overhead

load is identified. The amount of maximum control overhead processed by that node is

plotted against time for three different networks under study. The first one is Network

‘A’, which has 45 nodes and is shown in Figure 3.1 (Section 3.1); the second is Network

‘B’, which is another deployed outdoor network with 86 nodes and is shown in Figure 3.2

(Section 3.1); and the third is Network ‘C’, which is the large deployed smart meter

network with 2442 nodes as noted previously in this chapter.

In Figure 3.35, the comparison of maximum control loads is shown for different network

sizes. For the network with 45 nodes, the maximum number of control packets in the

3. RPL: PERFORMANCE EVALUATION 58

network stays within a limit of 50 packets (per 1-minute interval), where for the networks

with 86 and 2442 nodes, this limit stretches to 100 and 2 ∗ 103 packets per 1-minute

interval, respectively.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
1

10
2

10
3

10
4

Time (in Seconds)

N
u
m

b
e
r

o
f
M

a
x
im

u
m

 C
o
n
tr

o
l
P

a
c
k
e
ts

Comparison of Maximum Control Overhead Load for Different Network Sizes

Network C

Network B

Network A

Figure 3.35: Scaling Property of Maximum Control Packets Processed by Any Node over
Time.

This section also compares the CDF of the fraction of path change for three different

networks – A, B, and C. Figure 3.36 shows how the three networks exhibit a change of

P2P path when a 30% change in metric cost to the root is ignored before shifting to a new

parent.

It is also important to set an adequate validity time for the routing structure established

by the protocols. In RPL, frequent global repair will lead to frequent DAO and DIO

message transmissions, increasing the control cost, but keeping the topology up-to-date.

However, if the time period between two global repairs (henceforth mentioned as ‘DAG

repair period’) is too large, inconsistencies in the DAG may occur often. To quantify

inconsistencies, we measure the time spent by all nodes during which they do not have a

parent or path to the DAG root. In Figure 3.37, we plot the CDF of this loss of connectivity

3. RPL: PERFORMANCE EVALUATION 59

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Paths Changed

C
D

F

Comparison of Fraction of Paths Changed for Different Network Sizes

Network ’B’

Network ’A’

Network ’C’

Figure 3.36: Comparison of Distribution of Fraction of Path Change.

time for different values of DAG repair period. Thanks to the local repair mechanism,

the repair period has less effect on path unavailability. In Figure 3.38, the effect of the

global repair period timer on control packet overhead is shown where the control overhead

against the Node ID for different repair period values.

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 i

n
 P

e
r
c

e
n

ti
le

Loss of Connection Time

Repair Timer = 10 min

Repair Timer = 30 min

Repair Timer = 60 min

Figure 3.37: Unreachability time to DAG root for different DAG repair periods (RPL).

3. RPL: PERFORMANCE EVALUATION 60

0 500 1000 1500 2000 2500
10

2

10
3

10
4

10
5

Node Id

N
u
m

b
e
r

o
f
C

o
n
tr

o
l
P

a
c
k
e
ts

Comparison of Control Overhead, Source Rate − 10 Seconds / Packet

Repair Timer = 10 min

Repair Timer = 30 min

Repair Timer = 60 min

Figure 3.38: Numbers of Control Packets for Different Global Repair Timer Periods.

For a network built with low-power devices interconnected by lossy links, it is of the

utmost importance to ensure that routing packets are not flooded in the entire network and

that the routing topology stays as stable as possible. Any change in routing information,

especially parent-child relationships, would reset the timer, leading to emitting new DIOs,

and would hence change the node’s path metric to reach the root. This change will trigger

a series of control plane messages (RPL packets) in the DODAG. Therefore, it is important

to carefully control the triggering of DIO control packets via the use of thresholds.

In this section, the effect of the tolerance value that is considered before emitting a

DIO reflecting a new path cost is analyzed. Four cases are considered:

• No change in DAG depth of a node is ignored;

• The implementation ignores a 10% change in the ETX path cost to the DAG root.

That is, if the change in total path cost to the root/LBR – due to DIO reception

from the most preferred parent or due to shifting to another parent – is less than

10%, the node will not advertise the new metric to the root;

• The implementation ignores a 20% change in ETX path cost to the DAG root for

3. RPL: PERFORMANCE EVALUATION 61

any node before deciding to advertise a new depth;

• The implementation ignores a 30% change in the total ETX path cost to the DAG

root of a node before deciding to advertise a new depth.

This decision does affect the optimum path quality to the DAG root. As observed in

Figure 3.39, for 0% tolerance, 95% of paths used have an ETX fractional stretch factor

of less than 10%. Similarly, for 10% and 20% tolerance levels, 95% of paths will have

a 15% and 20% ETX fractional path stretch. However, the increased routing stability

and decreased control overhead are the profit gained from the 10% extra increase in path

length or ETX path cost, whichever is used as the metric to optimize the DAG.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

100

Fractional Metric Distance Stretch

C
D

F
 i
n

 %
a

g
e

Comparison of Fractional Metric Distance Stretch for Different Tolerance Values

0% Tolerance

10% Tolerance

20% Tolerance

Figure 3.39: ETX Fractional Stretch Factor for Different Tolerance Levels.

Figure 3.40 shows the effect of these cases on the stability of parent-child relationships,

where the average number of times the nodes’ preferred parent changed against the depth

of the node in the DAG is plotted. As expected, responding to all changes in the metric to

reach the DAG root results in more frequent change of parent in the middle of the DAG,

3. RPL: PERFORMANCE EVALUATION 62

which may bring instability of the routing table or instability of the DAG as a whole. This

decision does affect the optimum path quality to the root.

0 5 10 15 20 25
0

20

40

60

80

100

120

Average depth of a node

N
um

be
r

of
 fl

ip
pi

ng
 o

f p
ar

en
ts

Comparison of Parent flipping at different tolerance of metric distance change

0% Tolerance
10% Tolerance
20% Tolerance

Figure 3.40: Number of times parents changed across the DAG.

2 4 6 8 10 12 14

3000

3500

4000

4500

5000

Node Rank

N
u

m
b

e
r

o
f

D
IO

 p
a
c
k
e
ts

Tolerance Value = 0

Tolerance Value = 10

Tolerance Value = 20

Figure 3.41: Control overhead for difference tolerance levels.

3. RPL: PERFORMANCE EVALUATION 63

However, the profit gained from the sacrifice in total path cost is increased routing

stability and decreased DIO message overhead, as observed in Figure 3.41, which shows

the number of DIO packets against node depth (X axis) for the three tolerance values.

It can be observed that Figures 3.40 and 3.41 are correlated. In a sense, more flipping

of parents have contributed to more DIO generation. In the topology considered for this

parameter tuning study, the region of DAG corresponding to rank 10− 15 appeared to be

most unstable, with a spike in number of parent flippings, and consequent DIO emission for

0% tolerance level. We can observe that with a 20% tolerance level, we are able to remove

the ‘spike’ and decrease the amount of DIO transmission. However, flipping of parents or

DIO emission can not be a monotonous function of node rank, for they depend on several

factors such as node degree, link variation, link quality between parent and nodes farther

upwards, etc. Also, it must be mentioned that DAO packets contribute more significantly

to overall control overhead, a fact also observed in (19), so this variation might seem

insignificant while considering total overhead.

As the above-mentioned threshold also affects the path taken by a packet, this study

also demonstrates the effect of the threshold on routing stability (number of times P2P

paths change between a source and a destination). For Network ‘A’ (shown in Figure 3.1)

and the large smart meter network ‘C’, the CDF of path change is plotted in Figures 3.42

and 3.43, respectively, against the fraction of path change for different thresholds (trig-

gering the emission of a new DIO upon path cost change).

For above graphs, if X packets are transferred from source A to destination B, and

out of X times, Y times the path between this source-destination pair is changed, then

we compute the fraction of path change as Y/X ∗ 100%. This metric is computed over all

source-destination pairs, and the CDF is plotted in the y axis.

3.6 Summary

In this Chapter we presented a very detailed evaluation of RPL unsung a newly developed

RPL simulator and topology and traffic data from real deployments. All the simulation

3. RPL: PERFORMANCE EVALUATION 64

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Paths Changed

C
D

F

Comparison of Path Changes for Different Tolerence Values

10% Change ignored

20% Change ignored

30% Change ignored

Figure 3.42: Distribution of Fraction of Path Change for Network A.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Paths Changed

C
D

F

Comparison of Path Changes for Different Tolerence Values

20% Change ignored

30% Change ignored

Figure 3.43: Distribution of Fraction of Path Change for Large Network C.

results presented in this document corroborate the expected protocol behavior for the

topologies and traffic model used in the study. For the particular discussed scenarios, the

protocol is shown to meet the desired delay and convergency requirements and to exhibit

self-healing properties without external intervention, incurring negligible control overhead

3. RPL: PERFORMANCE EVALUATION 65

(only a small fraction of data traffic). RPL provided near optimum path quality for most of

the packets in the scenarios considered and is able to trade-off control overhead for path

quality as per the application and device requirement through configurable parameters

(such as decision on when to switch to new parent), and thus can trade-off routing stability

for control overhead as well. Finally, as per the requirement of urban LLN deployments,

the protocol is shown to scale to larger topologies (few thousand nodes), for the topologies

considered in this implementation.

4

Proactive versus Reactive in LLNs

Despite the existence of a standard track routing protocol for LLN, discussions have been

taken place as to whether other routing approaches could be suitable, such as deploying

reactive routing protocols in LLNs, such as in smart metering networks, industrial automa-

tion, water management networks, etc.. Recently, an alternate protocol called LOADng

(LLN On-demand Ad-hoc Distance vector routing protocol - next generation) (39), was

proposed at the IETF. LOADng is inspired by the AODV protocol, being reactive to in-

coming traffic. In (40), the authors of LOADng have compared it to a simplified version

of RPL and shown the benefits of the former with respect to control overhead, delay (con-

trary to what was found in (41) for AODV), frame collisions, etc. In their comparison,

however, RPL has been naively configured (e.g., time period for DAO emissions) resulting

in an unnecessarily cumbersome implementation, which lead the authors to simulate it

for a shorter period of time and for a completely different traffic pattern than that of

LOADng’s, therefore jeopardizing the value of the conclusions reached in the paper. In

the following, we attempt to summarize the main issues in the above study:

• The study considers that DAO messages in RPL are emitted periodically every 15

seconds, quite an unrealistic assumption for any RPL deployment. Unicasts of DAO

4. PROACTIVE VERSUS REACTIVE IN LLNS 67

packets are event based than periodic with small interval.

• The amount of time RPL and LOADng are run differs and moreover the traffic

pattern for each is also different. In RPL, data is sent from the “controller” or

collection point every 0.1 seconds, and for LOADng, that duration between successive

data transmission is 30 seconds. As we will show in this study, the performance of

LOADng depends hugely on data traffic load. It would be practical to show how

these protocols behave in a real traffic scenario, which is bi-directional, diverse, and

encompasses all nodes in the network.

• The deployed network in (40) does not assume any variation in link quality, or any

of the lossy characteristics that a typical LLN posses, leading to 100% delivery of

the packets.

This chapter aims at a fair comparison between the two protocols using a realistic

simulation study that includes an investigation on appropriate configuration parameters

for both protocols. Since many metrics on comparison of proactive and reactive protocols

are well studied, we concentrate more on issues and metrics specific to LLNs and have not

been offered much attention in existing literature, such as temporal variation of control

overhead due to multicast traffic, memory consumption, packet length for source routing,

scaling properties, etc. To accomplish this, the RPL simulator that we developed for the

study in (18) was extended to include LOADng’s implementation described in (39).

It may be argued that the debate of reactive versus proactive protocols has been

extensively researched in the context of traditional ad-hoc networks, and it is a well-

known fact that reactive protocols perform better in networks with low traffic volume.

We however argue that LLNs are different from traditional ad hoc networks not only due

to node capacity, but also in the nature of traffic generation and routing requirements,

making it worth to revisit the debate in the context of LLNs.

Recently, geographic routing protocols, such as (42), have also gathered attention in

solving the data gathering problem in constrained networks. One of the main advantages

of geographic routing is its low amount of state required to run the network. Indeed, in (43)

4. PROACTIVE VERSUS REACTIVE IN LLNS 68

the authors have developed a framework to successfully implement geographic routing in

an RF mesh network. However, the idea of appending a Global Positioning System (GPS)

to every node in some LLNs has detrimental consequences on low power devices, and thus

has been abandoned by the IETF ROLL working group (14). The work in (44) provides

performance comparison in terms of delay and hop count between RPL and a geographical

routing protocol for a 500 node smart utility network. Geographic routing keeps a state of

O(1) regardless of network size, and thus can be effective in large scale urban LLNs. (44)

also shows that geographical routing provides a larger delay and hop count than RPL.

Some of the recent literature on reactive versus proactive debate include (45), (46),

(47), (48), and (49). (45) compares OSPF and AODV in the context of Mobile Ad-hoc

NETworks or MANETs while using grid networks of size 9, 25, 49, 81 on TOSSIM sim-

ulator, and concludes in favor of AODV. Clearly, the network scale considered in this

study is much smaller than the size envisioned for several instances of LLNs. However,

the authors realize, as number of simultaneous flows increases, proactive protocols tend to

be more favorable over reactive ones. Similar result had been concluded analytically by

the authors of (50). This work compares proactive and reactive approaches from energy

consumption aspect, and determines that there exists a cross over point in message duty

cycle, beyond which reactive protocols consume more overhead and energy than proac-

tive routing protocols. In (46), the authors considered various QoS metrics qualitatively

to judge the merits of several routing protocols in MANET, and concluded that reactive

protocols outperform proactive counterparts in terms of scaling, power consumption, con-

trol overhead and table size. (47) compares the protocols AODV, DSR (Dynamic Source

Routing, (51)) and OLSR in terms of metrics such as throughput, end-to-end delay, etc.,

for varying traffic loads, number of flows and network sizes up to 100 nodes. A link state

protocol was chosen as a proactive routing candidate and the authors conclude that proac-

tive protocols are better suited for MANETs where the traffic is constant and periodic.

(48) compares a proactive distance vector protocol, DSDV (52), with a reactive protocol,

DSR, and a hybrid protocol, ZRP (53), and concludes that DSDV performs poorly when

4. PROACTIVE VERSUS REACTIVE IN LLNS 69

compared to the other protocols with respect to metrics such as delay, number of dropped

packets, and routing overhead. In (49), the authors have compared different protocols

such as OSPF, DSDV, TORA (Temporally-Ordered Routing Algorithm, (54)), DSR, and

AODV in terms of throughput, delay and routing load. However, Medium Access Control

(MAC) protocol are ignored in the study, thus effects of typical lossiness and congestion

of wireless links have been neglected, jeopardizing the results obtained. Almost all of the

literature above indicated that proactive protocols have a much lower delay than reactive

protocols, but suffer more from high control overhead.

The above mentioned literature fails, however, to reach the network scale of thousands

of nodes, which is typical for some LLN deployments. The traffic considered in most cases is

CBR, with no multicast traffic analysis. At the same time, no previous comparisons so far

consider varying link quality in the simulations. Since lightweight implementations are now

available for both proactive and reactive approaches, and classic MANET protocols are not

suitable for LLNs, a new routing solution was sought. RPL trades off a huge part of control

overhead for sub-optimality of path quality. In (41), Wang et al. presented a comparison

between RPL and AODV for smart meter AMI networks. Their results indicated that

RPL outperformed standard AODV with respect to delay and packet delivery ratio. The

authors in (55) have used a 25-node home automation network scenario and corresponding

traffic, to compare LOADng and RPL using the COOJA simulator. It is worthy to note

that the authors in (55) also recently pointed out similar drawbacks with the work carried

in (40). However, this article carries out simulation on networks of much larger sizes, and

encompasses several metrics not investigated in the current literature. For example, the

largest network considered in this study, is a 2442 node smart grid Advanced Metering

Infrastructure (AMI) network, where each node is an AMI meter, deployed in an urban

area. In Table 4.1, we provide a summarized differences of the works mentioned, and

in this work in terms of protocols considered, network scale, traffic pattern etc. To be

noted, in this study we are not considering many cross layer implementations available

for WSNs, such as (56, 57), as we aimed at providing the answer to a more generalized

4. PROACTIVE VERSUS REACTIVE IN LLNS 70

Works Protocols Network Traffic Simulation PHY+MAC Link Metrics
Referenced Considered Scale Pattern Platform model Variation considered

(45) AODV,
OSPF

9 − 81 CBR,
MP2P

TOSSIM CSMA/CA Not used Overhead,
time to
recover

(47) AODV,
DSR,
OLSR

25 − 100 CBR,
MP2P

OPNET 802.11b, No
packet drop
within range

Mobile
Nodes

Throughput,
Delay,
Routing
Load

(48) DSDV,
AODV,
DSR, ZRP

10 − 50 CBR,
P2P

NS-2 802.11, No
packet drop
within range

Mobile
Nodes

Throughput,
Aver-
age delay,
Packets
dropped,
Overhead

(49) SPF,
EXBF,
DSDV,
TORA,
DSR,
AODV,

30 P2P-
Poisson

MaRS
(Maryland
Routing
Simulator)

Dedicated
links, No
packet drop

Mobile
Nodes

Packet
Delivery
Ratio,
Delay,
Routing
Load

(41) RPL,
AODV

1000 CBR-
MP2P
and
Poisson-
P2MP

NS-2 No Inter-
ference /
packet drop

Not used Average
delay,
Packet
Delivery
Ratio

(55) RPL,
LOADng

15, 25, 40 P2MP,
MP2P,
both
periodic
and
random

COOJA /
Contiki OS

802.15.4,
CC2420

Not used Delay, Hop
Distance,
Overhead,
Table
Entries

This Work RPL,
LOADng

45−2442 MP2P
and
P2MP,
both
periodic
and
random

Castalia
/ OM-
NET++

802.15.4,
CC2420

Replays
gathered
link-
traces

Delay,
Path Cost,
Overhead,
Buffer Oc-
cupancy,
RAM con-
sumption,
Packet
Length

Table 4.1: Comparison of Existing Literature and the Contributions of This Study.

question, whether to compute and maintain the route beforehand or not. There are many

implementation styles available, and it is not within the scope or context of this work

to address every single of them, rather to look at general routing technique. Within the

requirements of routing in LLN proposed in IETF ((5, 6, 7, 16)), a protocol candidate

needs to be accommodating enough to consider all three major types of communication,

4. PROACTIVE VERSUS REACTIVE IN LLNS 71

P2P, P2MP and MP2P. Their are many protocols available which may be suitable for

converge-casting or multicasting in specific scenarios, but to extend the LLN or future

WSNs to be a part of IoT, one needs to avoid cross layer implementations, as they lead

to devising suitable gateway protocols and is a hindrance to both the real time IPv6

communication and the seamless network growth that IP has offered (22, 27).

4.1 LOADng: LLN On-demand Ad-hoc Distance Vector

Routing Protocol - Next Generation

LOADng is an AODV based protocol, adapted to LLN needs. LOADng works by gener-

ating Route Requests or RREQs by a source route (originator) while discovering a route

to a destination. RREQs are forwarded by the nodes in the network following a controlled

flooding or a classical flooding. A node receiving a RREQ packet creates a routing table

entry for the generator of the RREQ, and thus by receiving multiple RREQ from the same

generator, it learns the best route back to the source. Route Replies (RREPs) are gen-

erated upon receipt of a RREQ by the destination. These RREPs are forwarded towards

the generator of RREQ via the path learned when the RREQs were received. Every node

in the return path of RREP thus learns about the destination node, and installs a forward

route to the destination. Also, each RREP is acknowledged by the recipient; if an RREP

is not ACKed within RREP ACK TIME - a configurable parameter, the RREP is re-sent

to next hop to the originator of the request. Learned routes have an expiration time or

R Valid Time, after which the nodes have to generate new RREQ if a packet for that des-

tination arrives. If a route is not used within this R Valid Time, the route is considered

to be expired or obsolete. Figure 4.1 illustrates the process of RREQ forwarding. The

data follows the reverse path set up by RREP packets, as shown in Figure 4.2.

Route maintenance in LOADng is performed on a reactive basis. If a node detects a

link down, upon failure of a data packet delivery to the next hop, it may initiate route

discovery through the RREQ/RREP cycle again. It may also generate a route error

(RERR) packet and forward it back to the source of data traffic, forcing the source to

4. PROACTIVE VERSUS REACTIVE IN LLNS 72

Figure 4.1: RREQ forwarding in LOADng.

Figure 4.2: RREP forwarding in LOADng.

re-initiate the route discovery procedure. Moreover, when a node wishes to send traffic to

a destination for which the route is expired, or a next-hop link is broken, it re-initiates

the route discovery process.

LOADng and AODV have however some basic differences. Firstly, LOADng accepts

number of weak links in a path to be the path cost to adapt to LLN characteristics. When

a node receives an RREQ, it increments the path cost by one if the interface has a weak

4. PROACTIVE VERSUS REACTIVE IN LLNS 73

link with the previous hop node, otherwise the cost remains same. If two paths are of

equal cost, hop count is used for tie-braking. Thus, the protocol adapts itself to the lossy

character of the network. Secondly, no node other than the destination responds with an

RREP, even if it has a route to the destination. Furthermore, for RREQ messages, all

nodes check the link with previous hop for bi-directionality. If the link is unidirectional,

the RREQ is discarded. Lastly, no node maintains a precursor list for the nodes that use

itself as destination. Hence, when a link breakage is detected at a node, the node does not

send route error (RERR) packets to all such neighbors. When a data packet is received at

a node which does not have a route to the destination due to link break-down, it simply

sends back an RERR to the source of the data packet, forcing the source to initiate route

discovery once more.

4.2 Theoretical Comparison: A Balanced Aggregation/ Dis-

semination Tree Model

Being a reactive protocol, LOADng has its own boon and bane. While it does not proac-

tively disseminates control packets, on demand route discovery needs the packet to be

buffered while RREQs are multicasted and RREP is received, leading to higher delay

bound than a proactive protocol as RPL, as well as more buffer space. Also, control

packet volume scales in proportion to the number of flows in the network. In Smart

Grid AMI Meter networks, or in a building/home/industrial automation system, the LBR

sends periodic data to every sensor in the system. For a network of size N , this operation

needs N different RREQs to be generated by the LBR alone over the period. As each

node forwards a particular RREQ for a particular destination at least once, the control

overhead scales with Ω(N2) for a network of size N . In this section we will show that

RPL, by creating a DAG and forwarding DAOs only through the parent-child links in

the DAG, results in an overall control overhead that is lower than O(N2), and reduces to

O(Nlog(N)) for a balanced tree structure.

Recall that RPL creates a Directed Acyclic Graph (DAG), in which routing takes

4. PROACTIVE VERSUS REACTIVE IN LLNS 74

Figure 4.3: A balanced tree with B = 3.

place in an LLN. Since the created graph is acyclic by definition, links between preferred

parents and children create a spanning tree of the network through which data aggregation

(MP2P), or data dissemination (P2MP) takes place. In this section, we attempt to provide

a lower and upper bound on control packets for data aggregation/dissemination traffic

for both protocols. For the sake of simplicity, we first assume that the tree created by

constructing a DAG is a balanced tree, and show how the control overhead for RPL and

LOADng compares to one another.

Total control overhead for RPL with balanced tree

To determine the theoretical bounds, we first consider that the data aggregation tree, as

constructed from the DAG structure in RPL, is a balanced tree, with B children under

each parent. An example of a balanced tree with 3 children under each node is shown in

Figure 4.3. The tree has a height of H and hence, the number of nodes in the network is

given by N = (BH+1 − 1)/(B − 1). Therefore, for any node at a rank R, 1 ≤ R ≤ H + 1,

the number of nodes in its subtree including itself is given by

NR = 1 +B +B2 + ...+BH−R+1 =

H−R+1∑
i=0

Bi (4.1)

4. PROACTIVE VERSUS REACTIVE IN LLNS 75

Note that the root itself has a rank equal to 1. Now, if the time period to emit a new

DAG sequence number, as mentioned in Section 2.1, is T , then a new DAO is emitted by

each node every T seconds. For simplicity of calculation, we assume that there is no link

breakdown or topology change within this T time. For RPL, since a node forwards all

DAOs from all nodes in its sub-tree to the DAG root or LBR, the node X would handle

NR number of DAO messages in a period T . We assume the same topology stability

during T for LOADng, and therefore the route validity time (R Valid Time) for any route

in LOADng protocol is kept as T . Also, in LOADng, all NR nodes under a node X

at rank R would route their data to the sink/LBR through the node X and vice-versa.

Hence, the node X would be responsible to forward NR number of RREPs to the LBR for

data dissemination. Also, for both RPL and LOADng, the first respective DIO/RREQ

received by a node, arrives via the best path and, hence, no further DIO/RREQ updates

the parent entry/routing entry that is generated. So, for LOADng, effectively one RREQ

is forwarded per destination. This assumption is necessary, because it is not known when

the RREQ/DIO corresponding to the best path would arrive in a randomized situation,

so we assume that they arrive through the best path first.

Since the number of nodes at a given rank R is given by BR−1, the total number of

DAOs to be forwarded by all nodes at a rank R is

DAOR = BR−1 ∗
H−R+1∑

i=0

Bi (4.2)

Since for all nodes in the network excluding the root node, R can vary from 2 to H+1,

the total DAO packets in a network operating RPL is given by

DAOTotal =

H+1∑
R=2

(BR−1 ∗
H−R+1∑

i=0

Bi) (4.3)

Since the inner sum of Equation 4.3 can be written as

H−R+1∑
i=0

Bi =
BH−R+2 − 1

B − 1
(4.4)

4. PROACTIVE VERSUS REACTIVE IN LLNS 76

Hence,

DAOTotal =

H+1∑
R=2

(
BH+1 −BR−1

B − 1
)

=

H+1∑
R=2

(
BH+1

B − 1
)−

H+1∑
R=2

(
BR−1

B − 1
) (4.5)

As mentioned in Section 2.1, every T seconds, DAOTotal control overhead is generated

in the network operating RPL due to DAO propagation. Each node issues a DIO every time

the trickle timer for DIO fires, and the timer period is doubled after DIO emission. Hence,

each node, on average emits log2 T DIO messages within T seconds. Assuming no delivery

error, no DIS message in RPL, and that DAO ACK messages are to be acknowledged by

the LBR (same in number as DAO messages), the total control overhead in RPL for a

time period S is given by

CT,RPL =
S

T
[Nlog2T + 2

H+1∑
R=2

BH+1 −BR−1

B − 1
] (4.6)

Clearly, the assumptions here are that S is large enough to ignore the remainder of

S divided by T in comparison to S, or S is divisible by T . Normally, in a practical

implementation, T would be kept around half an hour, and total operation time S will

be in order of days or even years maybe. So this assumption is reasonable. Some simple

mathematical manipulation of Equation 4.6, considering N = (BH+1 − 1)/(B − 1) and

H = logB N , can yield

CT,RPL =
S

T
[N log2 T + 2

H+1∑
R=2

BH+1 −BR−1

B − 1
]

=
S

T
[N log2 T + 2H ∗ (N +

1

B − 1
)− 2B

B − 1
∗
H−1∑
i=0

Bi]

4. PROACTIVE VERSUS REACTIVE IN LLNS 77

=
S

T
[N log2 T + 2H ∗ (N +

1

B − 1
)− 2B

B − 1
∗ B − 1

B
(N +

1

B − 1
)]

Since 1/(B − 1) is a constant, and a fraction, when compared to N , we disregard it

from the complexity analysis. We assume (N + 1/(B − 1)) ' N , which yields,

CT,RPL =
S

T
[N(log2T − 2) + 2N logB N] (4.7)

Clearly, when RPL creates a balanced tree through the DODAG creation, the total

control overhead scales with Θ(NlogN), where N is the network size.

Total control overhead for LOADng in similar topology

Since LOADng is a reactive protocol and sets up the routing path when data transfer

is needed, the control packet overhead will depend on the traffic pattern. Lets assume

a simple traffic pattern of the LBR sending data to each node in a round-robin fashion,

with a period F . In an LLN, F may range from 30 minutes to few hours. So, the LBR

communicates with all N nodes once in a period F . The cache period of considering a route

valid is assumed to be T , as mentioned before. Now, if F ≥ T , each time the LBR wants to

send some data to a particular node, the route entry for that node would be invalid. Hence,

the LBR needs to set up the routing path by issuing RREQ for each node within F time.

Since we assume that one RREQ is broadcasted by each node for each destination, the

total RREQ transmission within F time is equal to N2. If we assume the same topology

as in the RPL analysis before, all RREPs would follow the path taken by DAOs in case of

RPL. Hence, the number of RREPs in F time is same as the number of DAOs transmitted

with RPL in T time, as we assume that RREQ received first corresponds to best path, and

each route request generates exactly one RREP. So, similar to Eqn. 4, the total number

of RREPs in F time is given by

RREPTotal =

H∑
R=1

(BR ∗
H−R∑
i=0

Bi) (4.8)

In addition, there will be same number of RREP ACKs as RREPs. So, the total

4. PROACTIVE VERSUS REACTIVE IN LLNS 78

control overhead (excluding RERR, given our assumption of no topology change within T

or R Valid Time) for a run-time of S is given by

CT,LOAD =
S

F
[N2 + 2

H+1∑
R=2

(BR−1 ∗
H−R+1∑

i=0

Bi)] (4.9)

By simple manipulations, the total control overhead is

CT,LOAD =
S

F
[N2 + 2N(logB N − 1)] (4.10)

Equations 4.7 and 4.10 provide the total control overhead for RPL and LOADng during

S runtime, assuming the DAG created by RPL creates a balanced tree for the topology,

and LOADng uses a similar path for the same topology. It is also assumed that both DIO

and RREQ reach every node via the best path first, and the link quality does not change

for time T , where T is the period at which global repair occurs for RPL, and routes are

valid in LOADng. However, topologies do not tend to create a balanced tree at the LBR,

and when RPL yields a completely unbalanced tree at DAG root, such as for cases in a

chain-like topology, the total control overhead scales with Θ(N2). To understand why it

is so, consider a chain-like topology, where N nodes create a DAG of height equal to N .

The leaf node will be responsible for 1 DAO (1 RREP for LOADng), the node above the

leaf will forward 2 DAOs (2 RREP for LOADng), and so on. So, with RPL, the number

of DAOs in T time will equal to

DAOTotal = 1 + 2 + · · ·+ (N − 1) =
N(N − 1)

2
(4.11)

The case for RREP messages for LOADng in F time will be similar. Hence both

protocols will have a total control overhead complexity of Θ(N2) for a chain-like topology.

For any other practical topology, the case will be between the two extremes of a balanced

tree and a chain-like topology, and in most cases RPL is expected to provide less control

overhead depending on the value of T and F , as we would observe in Section 4.4.

4. PROACTIVE VERSUS REACTIVE IN LLNS 79

4.3 Simulation Setup

As in (18) and Section 3.1, real link layer data gathered from the outdoor and smart meter

deployments were collected and used to compute the PDR (Packet Delivery Ratio) for each

link in the network. The link’s PDR in simulation varies according to the gathered traces

of the same link, therefore creating a “pseudo-replica” of the real network. The simulator

has been extended for this study, to include LOADng as per described in (39). In the

simulator, both RPL and LOADng run over a 802.15.4 MAC/PHY layer on top of a

CC2420 radio model for TelosB motes. The simulator was fed with topologies and traffic

traces from two real deployment networs (86 nodes outdoor network and a 2442 nodes

smart grid AMI network). Random topologies were used only in the scalability study

(Section 4.6). The simulation is run for 2 days of simulation for both RPL and LOADng.

4.3.1 Traffic traces

The following types of traffic and patterns, provided by smart grid AMI meter vendors,

were used in the simulation:

• Polling traffic: The collection point (LBR) retrieves information (statistic report,

status, load curve) from each node in the topology once a day, polling nodes in a

round robin fashion.

• On-demand operation traffic: Reading of index (same traffic pattern as above). Time

period between two readings from same node = F1. Short volume in both directions

(50 bytes). F1 is normally kept at a rate of once in 2 hours, unless otherwise

mentioned.

• Traffic due to multicast parameter modification (e.g. new tariff): 50 bytes sent by

the LBR to a node, multicast, with frequency once a day at 2200 seconds after start

of simulation.

• Traffic due to alarms: From a meter (node) to the LBR and unsolicited, so unidi-

rectional. 20 bytes of data is sent by each meter to the LBR, once a day.

4. PROACTIVE VERSUS REACTIVE IN LLNS 80

4.3.2 RPL and LOADng parameters

Based on our observations in Figures 3.37 and 3.38, a new sequence number is emitted

by the DAG root to globally re-construct the DAG every 30 minutes (DAG repair period)

for rest of the study. This value provided a good balance between control overhead, and

repair time (protocol convergence). R valid time for LOADng is set to the same value

as DAG repair period to bring fairness into the comparison, as both these parameters

deal with the trade-off between freshness of routes and control overhead. Hence, a path

in LOADng will be consider invalid 30 minutes after a route to destination is setup or a

successful packet forwarding to the particular destination takes place. Note that a lower

value of this parameter may incur more control overhead for LOADng, as mentioned in

4.2.

In this study, nodes ignore paths advertised via new DIOs if the path cost improvement

via the new parent is less than 20%. This value was chosen as it seemed to tone down the

amount of parent flipping and resetting DIO trickle timer. The default value of Imin is

provided to be 8 ms in RFC 6550, however, existing works prefer to set at in the range

of 1 second (18, 58) or 4 seconds as in COOJA simulator by Contiki or (19). In this

study, we set Imin = 1 second. Every node sends out a DAO message to the DAG root

through the preferred parent after a new DAG sequence number is recorded or preferred

parent is changed after a time duration proportional to the node’s own rank. This is to

make sure the reverse path for a DAO-ACK is set when the DAG root receives a DAO.

For LOADng, RREP ACK TIME is set to 0.2 seconds, after which nodes transmitting a

RREP will check their cache for the respective ACKs. For transmission power settings,

please refer to (37). The simulation details are summarized in following Table 4.2.

4.4 Performance Results for Smart Grid Traffic

To evaluate these protocols fairly, we consider both small outdoor deployment and the large

smart meter AMI network, and evaluate RPL and LOADng under the same traffic profile

described in Section 4.3.1. In this section, results for end-to-end delay, path quality, control

4. PROACTIVE VERSUS REACTIVE IN LLNS 81

Common paramaters
Data rate 240 Kbps
MAC standard 802.15.4
Transport protocol UDP

RPL paramaters

Imin 1s
MaxDoubling 12
DAG repair period 30 min
Path cost tolerance 20%

LOADng paramaters
R Valid Time 30 min
RREP ACK TIME 0.2s

Table 4.2: Simulation settings.

overhead, memory requirements, dependency on application data rate, and packet length

are discussed and analyzed. Similar metrics are also studied for a P2P communication

scenario in Section 4.5. It is evident from our study that collecting reading reports more

frequently, or adding new application modules will further deteriorate the performance of

LOADng, so we consider a lower frequency of reporting operation.

4.4.1 Control overhead and ability to support P2MP or MP2P traffic

Since nodes in LLN have limited capacity in terms of power storage and/or scavenging, as

well as face scarce bandwidth, control overhead is one of the most important considerations

in choosing a routing protocol. It is well known that in networks with light traffic load

and a small topology, a reactive protocol may be better suited than proactive protocols.

The deployments and nature of applications running over a LLN often require a node

to send the same data to multiple recipients, requiring multicasting or P2MP support

from the routing protocol. These destinations may be several hops away, requiring an

efficient dissemination method or multicast traffic (P2MP) support provided by the routing

protocol. P2MP traffic includes, but is not limited to:

• management information multicasted to all nodes to a certain region in a landscape,

or a certain part of the manufacturing pipeline in an industrial automation setting;

• new tariff notification to a group of users in a smart grid deployment;

4. PROACTIVE VERSUS REACTIVE IN LLNS 82

• a single node providing sensed data to multiple servers.

Indeed, RFC 5548 (7) necessitates the support of P2MP traffic for a protocol to be

suitable for U-LLN deployment. It describes - “the protocol(s) should be optimized to

support a large number of unicast flows from the sensing nodes or sensing clusters towards

a LBR, or highly directed multicast or anycast flows from the nodes towards multiple

LBRs.” While AODV can support multicast IP address in RREQ destination address,

and an AODV based protocol may be altered to support an on-demand bi-directional

route between any two nodes in the network, the protocol does not have provision to

support P2MP traffic. LOADng does not have provision for supporting multiple route

discovery either. A naive solution, would be to create a copy of the same message to

send for each destination. To find the route to each destination, the node may have to

create separate route request(RREQ) messages and broadcast them. This broadcast event

creates a huge control overhead and the protocol does not scale well with the network size.

Hence, AODV or reactive protocols in general may become unsuitable to be deployed in a

large scale U-LLN where P2MP traffic needs to be supported, even if for 1-2 times a day.

This is the reason we included multicast traffic once a day in simulation, and the following

simulation results confirm our intuition.

Figure 4.4 shows the maximum control packets processed by any node over time for

RPL non-storing mode and LOAD-ng, with the objective of studying the computational

and processing load exerted on the nodes in the network. The 2 days of simulation time

have been broken down to small windows of 1 minute each, and we computed the number

of control packets processed/transmitted by each node within that window. The maximum

processed control packets over all nodes for the window is plotted against time for both

RPL and LOAD-ng. The figure shows that RPL exhibits a peak of control message

processing when a new sequence number is emitted for global reconstruction of the DAG,

such as at 0− 60, 1800− 1860 and 3600− 3660 seconds. Recall thats this implementation

considers a DAG repair period of 30 minutes. LOADng exhibits a peak of maximum

control message processing when multicast traffic is generated by the LBR. In subsequent

4. PROACTIVE VERSUS REACTIVE IN LLNS 83

intervals, as the nodes finish broadcasting RREQs and forwarding RREPs, the control

volume gradually decreases. We skipped plotting RPL storing mode in this figure and in

the next one for the sake of clarity, as we have observed in Figure 4.5 and 4.6 that both

storing and non-storing mode create almost similar amount of control overhead for this

network. Similar behavior is also observed for the large deployment (omitted for brevity).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

M
a

x
im

u
m

 C
o

n
tr

o
l
p

a
c
k
e

ts

RPL Nonstoring − Small

LOAD−ng − Small

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

6000

Time (in seconds)

M
a

x
im

u
m

 C
o

n
tr

o
l
p

a
c
k
e

ts

RPL Nonstoring − Large

LOAD−ng − Large

Figure 4.4: Maximum control packets processing for RPL and LOAD-ng.

Likewise P2MP traffic, MP2P traffic needs to be supported by a routing protocol

intended to be designed for an LLN. A U-LLN should support occasional large-scale traffic

flows from sensing nodes through LBRs (to nodes outside the U-LLN), such as system-

wide alerts (7), or all nodes in one area reporting malfunction / emergency in part of the

manufacturing plant. This situation may lead to a broadcast storm in the network, similar

to the P2MP traffic scenario, leading individual RREP to reach the initiator node much

later. Proactive Route to the actuators and periodic update can prevent this broadcast

storm.

4. PROACTIVE VERSUS REACTIVE IN LLNS 84

0 10 20 30 40 50 60 70 80 90
10

3

10
4

10
5

10
6

10
7

Node Id

N
u

m
b

e
r

o
f

c
o

n
tr

o
l
p

a
c
k
e

ts

RPL−Storing

RPL−NonStoring

LOAD−ng

Figure 4.5: Control overhead for RPL and LOADng.

0 500 1000 1500 2000

10
4

10
5

10
6

Node Id

N
u

m
b

e
r

o
f

c
o

n
tr

o
l
p

a
c
k
e

ts

RPL−Storing

RPL−NonStoring

LOAD−ng

Figure 4.6: Control overhead for each node in a large network.

Figure 4.5 shows the control overhead cost for both LOADng and RPL non-storing

mode in the smaller topology, whereas in Figure 4.6, the same is demonstrated for the

4. PROACTIVE VERSUS REACTIVE IN LLNS 85

larger smart grid deployment. We observe that LOADng yields a control volume a magni-

tude larger than that of RPL. The control overhead in RPL depends mainly on two types

of advertisements, i) DIO and ii) DAO (including DAO-ACK). While the DIO control

overhead exhibits an exponential delay over time, the DAO control overhead for a given

node depends on the number of nodes in its sub-tree, and thus it inversely varies with

the rank of the node. In the figure, it is worth observing that, for RPL, some nodes have

higher amount of control message transmission; these nodes (eg., 22, 66 in the smaller net-

work, and lower ID nodes in the large deployment) are the nodes directly connected to the

LBR, and hence are responsible for larger amount of DAO and/or DAO-ACK propagation.

Hence, overall, for most nodes (other than a few tens among thousands) LOADng exhibits

an order of magnitude more control packet transmissions than either mode of RPL. For

LOADng, RREQ and RREP packets travel through nodes closer to the collection point;

moreover communication with each destination also incurs RREQ packet forwarding for

each node in the network.

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

14000

16000

Time(s)

T
o
ta

l
C

o
n
tr

o
l
V

o
lu

m
e
 i
n
 N

e
tw

o
rk

 (
P

a
c
k
e
ts

)

Comparison of Total Control Packet with time

RPL−NonStoring

AODV−LOAD

Figure 4.7: Total control packets processing - RPL vs LOADng in small network.

4. PROACTIVE VERSUS REACTIVE IN LLNS 86

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
5

Time (in Seconds)

T
o
ta

l
C

o
n
tr

o
l
V

o
lu

m
e
 i
n
 N

e
tw

o
rk

 (
P

a
c
k
e
ts

)

RPL−NonStoring

LOAD−ng

Figure 4.8: Total control packets processed in network against time in large network.

Though RPL periodically reaches a peak of maximum control overhead processing,

this peak is only applicable to nodes directly connected to the LBR, therefore processing

a large number of DAOs/DAO-ACKs. For LOADng, however, the control overhead does

not depend much on the distance from the LBR. From a network congestion point of view,

it is more disadvantageous to have all nodes transmitting large number of control packets,

than only a few nodes at lower rank doing so. To look into this scenario more carefully,

Figure 4.8 shows the total number of control packets processed by all nodes in each 1

minute window for the large network. The plot shows the overall higher volume of control

traffic when multicast traffic appears. For LOADng, when a multicast traffic appears,

every node takes part in broadcasting the RREQ packets, and the number of broadcasts

for each node reaches as many as the number of recipients in the multicast. Hence, the

total number of control packets in the network becomes significantly larger than that of

RPL. The figures also show that even when global repair is initiated in RPL, the total

control traffic volume in the network is still lower than that of LOADng. LOADng’s high

4. PROACTIVE VERSUS REACTIVE IN LLNS 87

control packet flooding may therefore lead to stall of data communication, and/or network

crash.

4.4.2 Dependency of control overhead on application module

LLNs are a nascent area, also referred to as IP smart objects networks or the “Internet of

Things,” constantly growing in importance. Thus, a LLN that is currently provisioned to

be used for data gathering purpose only, may include additional application modules in

the future. Smart grid deployments may need to implement new modules of management

traffic from the base stations to AMI meters, in addition to what is envisioned at present.

LLNs are evolving and therefore it is expected that new applications and requirements

will be part of its future (an LLN may also be re-purposed).

Reactive protocols, however, discover route on an on-demand basis. Thus, adding

a new application module which requires more data communication in addition to the

current data traffic pattern will incur additional control overhead. Hence, if a network is

designed to operate within bounds in terms of maximum control overhead load, adding new

application modules may well force the control overhead to surpass the designed maximum

limit. For example, a deployment requiring both MP2P and P2P application may incur

more overhead than a deployment which is currently working with only data aggregation.

Since LLNs will undoubtedly require more application modules and management modules

to be augmented in future, a suitable routing protocol should be able to cope with the

added traffic. For the sake of illustration, many smart grid networks, which were originally

designed for the purpose of advanced metering, now require a multi-service networks in

support of a variety of applications including meter reading, use of meters of alarms,

distribution automation and electric vehicles, leading to a variety of traffic patterns each

with different quality of service requirements.

To illustrate this, Figure 4.9 shows the control overhead versus node ID for different

polling intervals for LOAD-ng: 30 minutes, 1 hour, 2, 6 and 12 hours. One can see that the

control overhead increases as the LBR polls the nodes more often. Figure 4.10 shows the

4. PROACTIVE VERSUS REACTIVE IN LLNS 88

0 10 20 30 40 50 60 70 80 90
10

2

10
3

10
4

10
5

Node Id

N
u
m

b
e
r

o
f
c
o
n
tr

o
l
p
a
c
k
e
ts

Comparison of Control Overhead for different application rate

Polling Interval − 30 min

1 hour

2 hour

6 hour

12 hour

Figure 4.9: Control overhead vs. node ID for different application rates, LOADng.

0 10 20 30 40 50 60 70 80 90
10

3

10
4

10
5

Node Id

N
u
m

b
e
r

o
f
c
o
n
tr

o
l
p
a
c
k
e
ts

Comparison of Control Overhead for different application rate, RPL−NonStoring

Polling Interval − 1 hour

2 hour

6 hour

12 hour

24 hour

Figure 4.10: Control overhead vs. node ID for different application rates, RPL non-storing.

total control packet volume for RPL non-storing mode of operation for different polling

intervals. The LBR is set to probe each meter in a round robin fashion with 1, 2, 6, 12 and

4. PROACTIVE VERSUS REACTIVE IN LLNS 89

24 hours intervals. Clearly, being a proactive protocol, RPL’s performance with respect

to control overhead does not depend on which fashion application data is being generated,

as shown by the overlapping results.

4.4.3 Path quality

Reactive and proactive protocols do not differ much on the path quality. There are several

implementations of reactive protocols where a destination node may or may not wait to

release a RREP after receiving a RREQ for itself. In LOADng, even if multiple RREPs

are received, the data packet is released when the first RREP reaches the originator, which

in most of the cases does not result in the best path selection between two nodes. On

the other hand, in RPL, P2P paths may often be very non-optimal. RPL may also not

select the best path, as it ignores paths that do not yield a certain percentage (20% as

mentioned in Section 4.3.2) of improvement of path cost when it receives a DIO. However,

the majority of the data traffic in LLNs flow between the LBR and the meters, the path

quality does not reflect the non-optimum path length for RPL protocol in peer-to-peer

scenarios. Hop distance or similar path quality metrics are not observed as the most

important in LLN deployments.

In LOAD-ng, even if multiple RREPs are received, the data packet is released when

the first RREP reaches the originator, which in most cases does not reflect the best path

between two nodes. Similarly, RPL may also not select the best path, as it ignores paths

that do not yield a certain percentage (20% in this study) of improvement of path cost

when it receives a DIO. Figure 4.11 shows the CDF of the end-to-end hop distance for

RPL and LOAD-ng for both networks. It is observed that LOAD-ng provides paths with

almost the same number of hops as RPL’s. For instance, in the smaller network, 85% of

end-to-end communications in RPL took paths with length less than or equal to 8 hops,

while the same happened with LOAD-ng. For the larger network, 85% of communications

are retained within 12 hops for both protocols. The CDF is calculated over thousands of

packets to and from the collection point, and we can observe all protocols exhibit similar

4. PROACTIVE VERSUS REACTIVE IN LLNS 90

performance in terms of hop count. Additionally, Figure 4.12 shows the CDFs of the ETX

path cost for all packets in the large network for both modes of RPL and LOADng, which

are almost identical. Hence we can conclude that “path-quality-wise”, the three protocols

exhibit similar behavior even for a large topology for the specified traffic pattern. For fair

comparison, such a P2P type application is studied in Section 4.5.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Hop Distance

C
D

F
 i
n

 %
a

g
e

LOAD−ng−Small

RPL NonStoring−Small

LOAD−ng−Large

RPL NonStoring−Large

Figure 4.11: End-to-end hop distance for RPL and LOAD-ng.

4.4.4 High end-to-end delay

Data in LLNs can be of different types, origins and may require different Quality of Service

(QoS) requirements. Some data, such as periodic reports, are delay tolerant up to even

few tens of seconds, whereas some are very delay sensitive, for example emergency alarms,

fault notification and alert packets. According to RFC5673 (6), in industrial setting,

“non-critical closed-loop applications have a latency requirement that can be as low as

100 milliseconds”. Clearly, these types of alert packets need a path to the destination

4. PROACTIVE VERSUS REACTIVE IN LLNS 91

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

ETX Path Cost

C
D

F
 i
n

 %
a

g
e

RPL−NonStoring

RPL−Storing

LOAD−ng

Figure 4.12: CDF of the total ETX path cost in a large network.

10
−4

10
−2

10
0

10
2

10
4

0

10

20

30

40

50

60

70

80

90

100

Delay

C
D

F
 i
n
 %

a
g
e

RPL−NonStoring

RPL−Storing

LOAD−ng

Figure 4.13: End-to-end delay for RPL and LOADng.

4. PROACTIVE VERSUS REACTIVE IN LLNS 92

10
−4

10
−2

10
0

10
2

10
4

10
6

0

10

20

30

40

50

60

70

80

90

100

Delay (in Seconds)

C
D

F
 i
n

 %
a

g
e

RPL−NonStoring

RPL−Storing

LOAD−ng

Figure 4.14: End-to-end delay for RPL and LOADng - large network.

as soon as they are generated. This section of the simulation results intends to compare

end-to-end delay effectiveness of the protocols under study. For a reactive protocol, it is

well established that the delay is larger due to on-demand path computation. This study

not only confirms the same, but also points out pathological cases which may further

affect the delay bound provided by the protocols. Figure 4.13 and Figure 4.14 show the

Cumulative Distribution Function (CDF) of the end-to-end delay for both modes of RPL

and LOADng for the small and large deployments respectively, where the X axis denotes

the delay in seconds (in logarithmic scale) and the Y axis demonstrates the corresponding

CDF value. For instance, it can be seen in the figure that 90% of the packets have been

delivered within 0.1 seconds or less with RPL non-storing mode, while only 65% of the

packets have been delivered within the same time-frame with LOADng.

This behavior stems from the fact that LOADng, and reactive protocols in general,

first set up the path before sending the data. Since data communication in LLNs between

any two peers is not very frequent (2 hours as mentioned in Section 4.3.1), the established

path to a particular destination may be invalid next time data is generated for that

4. PROACTIVE VERSUS REACTIVE IN LLNS 93

particular destination. Also, the next hop might be unreachable, given the fluctuating

link conditions in LLNs. Hence, practically every time that peers need to communicate,

they need to flood the network with RREQs (preferably in a controlled manner), wait

for RREP to be received, and then release the data packet, incurring a larger end-to-end

delay. The results for LOADng also show that some data packets may suffer a delay of

a few tens of seconds to reach the destination. This is due to the loss of RREQ, RREP

and/or RERR packets. Most of these data packets, which take few tens of seconds or more

to get delivered, result from multicast traffic that clogs the network with control traffic,

as we will observe in Section 4.4.1.

10
−4

10
−2

10
0

10
2

10
4

0

10

20

30

40

50

60

70

80

90

100

Delay

C
D

F
 i
n
 %

a
g
e

RPL−NonStoring

RPL−Storing

LOAD−ng

Figure 4.15: End-to-end delay for RPL and LOADng, zoomed in.

We then consider only cases where the data packet has been lost, or any RREP/RREQ

has been lost due to collision, link conditions, etc. Figure 4.15 zooms into such pathological

cases. Again, we plot the CDF of delay versus the delay value (in seconds). Since RPL

implements backup parents and backup routes (at the DAG root or collection point), the

4. PROACTIVE VERSUS REACTIVE IN LLNS 94

0 5 10 15
10

−3

10
−2

10
−1

10
0

10
1

Hop Distance

A
v
e
ra

g
e
 D

e
la

y
 (

in
 s

e
c
o
n
d
)

RPL−NonStoring

LOAD−ng

Figure 4.16: End-to-end delay vs. hop distance for RPL and LOADng.

alternate route can be chosen rather quickly upon any delivery failure of a data packet

from the lower layer. For LOADng, however, a new route discovery must be initiated.

Moreover, on the loss of RREP packets, the data packet will only be transmitted when

another RREP for the same destination arrives at the source through another path.

In Figure 4.16, we plot the average delay against hop distance for LOADng and RPL

non-storing mode, along with their 95% confidence interval. The delay statistics for each

hop distance x is gathered from the time each packet takes while traversing a distance

of x hops. For each hop distance x, we calculate the average as well as the confidence

interval from the delay statistics generated by all such packets. We observe that not only

RPL has a lower average delay for any given hop distance between two peers, but also the

variance is much lower, yielding a more reliable delay bound. Since both modes of RPL

showed similar delay bound in Figure 4.13, for the sake of clarity, this plot does not show

RPL storing mode.

The unreliability in delay bound for LOADng, statistically shown as a larger 95%

confidence interval is also attributed to the reactive nature of the protocol. Since new

4. PROACTIVE VERSUS REACTIVE IN LLNS 95

communication requires a route request broadcast, such communications may result in

higher delay due to broadcasting, RREP loss, etc. On the other hand, some communica-

tions from the same originator to destination happen right away, as the path is established.

Note also that communications in reverse direction between the same peers (as happens

in query-based communication) do not require route discovery, and may take place as

instantly as the application layer packet reaches the network layer. For these reasons, the

end-to-end delay for the same pair of peers, or over the same number of hops, may vary

widely over simulation time.

4.4.5 Impact on memory requirements

Memory constrained devices with low power are the pivotal components of LLNs, therefore

it is important to study the memory requirements of each protocol. Reactive routing

protocols usually rely on route caching for discovered destination. With LOADng, nodes

build their routing table based on RREQs and RREP packets received, therefore if any

node participates in multiple active flows in the network, the node needs to store next hop

and validity information for each source and destination node. Thus, depending on the

user traffic, some nodes tend to increase their routing table size proportional to number

of flows passing through themselves. However, characteristics of LLNs never guarantee

enough storage space in any node for storing routing tables. Destination oriented flooding

in LLN, tends to worsen this situation. Multiple route requests may reach the same node

at the same time for different destinations. Even though the destination may never be

reached through the concerned node, the nodes still have to process and re-broadcast each

request. On the other hand, RPL non-storing mode does require nodes to store any routing

information. In this section, we will demonstrate maximum memory requirement for the

protocols such that no packet or routing entry is dropped. To be noted, plots which deal

with maximum buffer or RAM occupancy, maximum value is of more importance than

any other statistical information such as average value with confidence interval. If a single

node in the network in a single scenario needs ‘M ’ KB of RAM, then all nodes for that

4. PROACTIVE VERSUS REACTIVE IN LLNS 96

network need to be equipped with ‘M ’ KB of RAM.

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

Node Id

M
a

x
im

u
m

 R
a

m
 O

c
c
u

p
a

n
c
y
 (

P
a

c
k
e

ts
)

RPL−NonStoring

LOAD−ng

Figure 4.17: Maximum RAM occupancy - RPL non-storing vs LOADng.

Figure 4.17 shows the maximum RAM that has been occupied (in Bytes) against

the Node ID for RPL non-storing mode and LOADng for the smaller deployment. It

should be noted that this RAM occupancy is only a result of storing routing tables (as in

LOADng), parent tables (as in RPL), queued packets for transmission, any kind of data

structures, etc., and does not include the amount of RAM space the protocol code itself

would occupy for implementation. Note also that the collection point has been excluded

from this analysis, as the collection point is supposed to be a computationally resourceful

device, irrespective of the routing protocol. The maximum RAM requirement for RPL has

been found to be 2 KB, and that for LOADng is 6 KB. However, it should be pointed out

that LOADng’s code would occupy less memory than RPL’s; however in a large network

that advantage may well be lost due to high buffer and routing table requirements for

LOADng. Figure 4.18 shows the maximum RAM occupancy (in Bytes) for LOADng and

4. PROACTIVE VERSUS REACTIVE IN LLNS 97

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5
x 10

5

Node Id

M
a

x
im

u
m

 R
a

m
 O

c
c
u

p
a

n
c
y
 (

P
a

c
k
e

ts
)

RPL−NonStoring

LOAD−ng

Figure 4.18: Maximum RAM occupancy in bytes for each node in a large network.

RPL non-storing mode for the large smart grid deployment.

4.4.6 Qualitative comparative analysis

4.4.6.1 Flooding issues in LLNs

A reactive protocol is well-suited for a traffic pattern where data transfer is not very

frequent. However, if the traffic pattern includes periodic data reporting, even as low as

a few times in a day, the traffic pattern will induce periodic broadcast of route request

throughout the network. A simple example scenario can clarify this: assume an application

in a U-LLN requires periodic data reporting every 6 hours or 4 times in a day - morning,

noon, evening and night. If the network consists of 2000 nodes, which is a very conservative

number in a typical U-LLN, the application alone will create a route request broadcast for

each sensor node every 11 seconds, on average. Thus, over the life of the sensor network,

a reactive protocol will use more control overhead than a proactive protocol.

The amount of flooding to discover routes may also be controlled via tweaking the route

4. PROACTIVE VERSUS REACTIVE IN LLNS 98

expiry time or route validity time. If a route is active, nodes should not waste network

resources trying to find out the route to the same destination. Keeping a high expiry time

for the routes, on the other hand may prevent flooding the next time data is generated for

the same destination. However, the path may well have been invalid by the route expiry

time. Considering LLN link characteristics, link flapping is a very frequent event. Hence,

high route expiry time may lead a node to find out invalidity of a path, thus forcing to

flood the network again for route discovery. Thus, increasing route expiry time or route

validity time for an AODV-based reactive protocol may not prove to control flooding in

LLN. Proactively choosing a back-up path proves to be an effective way to ensure valid

routing path in presence of link flaps, whereas reactive routing approaches are not able

to cope with link dynamics, thus preventing its usage for LLNs. Furthermore, if traffic is

sent along a broken path, a new request would consequently be generated, thus increasing

the control traffic load, in addition to incurring additional delays for the user data.

4.4.6.2 Impact of flooding in battery operated nodes

Note that there is a lot of evidences supporting the claim that using flooding or scoped

flooding to discover routes is ill-suited to power constrained Low-power and Lossy Net-

works (LLNs) in general. This is due to the low-power requirement. In low-power wireless

networks, broadcast packets usually cost much more energy by the hardware to transmit

than unicast ones due to implementations of sleeping mechanisms. As pointed out in (59),

supporting broadcast transmission is difficult while implementing Low Power Listening

(LPL) due to asynchronous duty-cycles of nodes. As the wake up time for each node in a

neighborhood is independent, often multiple transmissions of a single frame are required

to emulate one broadcast transmission. These multiple transmissions may consist of uni-

cast transmissions to each of the neighbor (RI-MAC, see (60)), or repeated transmition

of the frame during the whole sleep interval as done in X-MAC-UPMA ((61)). Otherwise

a really long preamble would be required, thus increasing power consumption more for

broadcasts packets in either case. Ad-hoc networks which are normally always on, will

4. PROACTIVE VERSUS REACTIVE IN LLNS 99

not face this problem. Hence, reactive routing methods that use flooding mechanism for

route discovery often, are more suited for Mobile Ad-hoc networks, but not for LLNs in

general. LLNs should limit use of flooding or broadcasting packets as much as possible via

algorithms such as Trickle (38). However, at this point, we would exclude consideration

of such hardware dependent energy expense from our discussion.

4.4.6.3 Lack of support for routing based on node capability

Apart from providing a route between any two nodes in the network, a routing proto-

col suitable for LLN should be able to handle additional constraints. An LLN mainly

consists of constrained devices, both functionality and memory-wise, and inherently het-

erogeneous in nature. Hence, any routing protocol suitable for LLNs should support

node constraint based routing. This requirement is mandated in RFC5548 (7) as follows:

“the routing protocol MUST be able to advertise node capabilities that will be exclu-

sively used by the routing protocol engine for routing decision”. For example, the routing

protocol should avoid a node with less battery power while routing to reach a server. Sim-

ilarly, for industrial automation requirements, RFC5673 (6) also needs a routing protocol

to provide device-aware routing, as it describes “The routing algorithm MUST support

node-constrained routing (e.g., taking into account the existing energy state as a node

constraint). Node constraints include power and memory, as well as constraints placed on

the device by the user, such as battery life”. For home routing automation, RFC 5826

(5) specifies, “The routing protocol SHOULD route via mains-powered nodes if possible.

The routing protocol MUST support constraint-based routing taking into account node

properties (CPU, memory, level of energy, sleep intervals, safety/convenience of changing

battery)”.

Clearly, recognizing a node’s capability and routing accordingly is an important aspect

for any routing protocol designed to be suitable for LLNs. However, any AODV-based

protocol (such as AODVv2, formerly DYMO (62) and LOADng), in their current spec-

ification, fail to provide routes based on any such constraint. Currently known reactive

4. PROACTIVE VERSUS REACTIVE IN LLNS 100

routing protocols do not have any provision to determine whether the next-hop node in

a route has enough battery power to sustain the route, or whether the next-hop node is

main powered or provides a particular functionality. Thus, these protocols fail to provide

requirements mandated by (5, 6, 7) for routing in an LLN.

4.5 Performance Results for P2P Communication

Clearly, the performance of LOADng depends on the application characteristics and in

what manner nodes communicate with each other. If every node talks to a single meter

within a short time duration, a single RREQ broadcast is sufficient for many (however,

not all) nodes in the network to gather route information about the destination. At the

same time, a single RREQ broadcast provides all nodes in the network with the route to

the originator. Thus, while some applications may consume little control overhead, others

may create a broadcast storm.

P2P traffic in this section is simulated as follows: every meter communicates with

another meter in the network other than the LBR. Each node generates a packet every

60 minutes, and communicates with a different node in each interval. Therefore, no two

nodes communicate with the same node in any given 60 minutes interval.

4.5.1 Path quality

Figure 4.19 shows the CDF of the path length (in number of hops) for RPL storing

mode, RPL non-storing mode and LOADng, with the above P2P traffic profile. It is

observed that RPL non-storing mode has a large path length for true P2P application, as

all communication is directed via the LBR. LOADng and RPL storing mode result in very

close path lengths, even if storing mode does not yield optimum path quality in terms of

path length.

Figure 4.20 shows the CDF of the ETX path cost (plotted in Y axis) against the ETX

path cost value (plotted in X axis) for both modes of RPL and LOADng. As before,

the ETX path cost for RPL storing mode and LOADng are very similar, but LOADng

4. PROACTIVE VERSUS REACTIVE IN LLNS 101

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Hop Distance

C
D

F
 i
n
 %

a
g
e

LOAD−ng

RPL−NonStoring

RPL−Storing

Figure 4.19: End-to-end hop distance for RPL and LOADng; P2P application.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

ETX Path Cost

C
D

F
 i
n
 %

a
g
e

RPL−NonStoring

RPL−Storing

LOAD−ng

Figure 4.20: ETX path cost for RPL and LOADng; P2P application.

sometimes produces a path with lower cost. RPL non-storing mode is not optimized for

P2P applications and therefore provides path with much larger ETX path costs than both

4. PROACTIVE VERSUS REACTIVE IN LLNS 102

storing mode and LOADng.

4.5.2 End-to-end delay

Figure 4.22 shows the CDF of delay in seconds for both modes of RPL and for LOADng

for the P2P application scenario. Interestingly, even though RPL non-storing mode incurs

a high cost to reach the destination in terms of hop count and ETX path cost, for many

paths it provided lower delay than LOADng. This phenomenon can be explained by the

reactive protocol’s reaction time for a non-existent routing table entry or a route that is

no longer valid. But once the route is established, and the path is valid, LOADng may

provide lower delay than RPL non-storing mode, as observed in the figure, for up to 55%

of the received packets. RPL storing mode, however, outperforms both, providing overall

lower delay.

4.5.3 Memory requirements

We also compare the maximum RAM requirement for RPL non-storing mode and LOADng,

shown in Figure 4.21. RAM occupancy in RPL storing mode is topology dependent and,

for the topology in use, it is very similar to that of LOADng. It is observed that RPL

has a maximum RAM occupancy of around 3 KB, and LOADng has a maximum RAM

occupancy of around 10 KB. However, these results depend on traffic pattern, frequency,

etc. As before the LBR or collection point of the network has been excluded form the

memory analysis, as it should be a computationally resourceful device. The memory foot-

print is calculated only for resource constrained LLN nodes. Note that, as mentioned in

Section 4.4.5, the amount of RAM space that would be occupied by the code for imple-

mentation of each protocol is not included in this simulation, and it would be smaller for

LOADng.

4. PROACTIVE VERSUS REACTIVE IN LLNS 103

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Node Id

M
a
x
im

u
m

 R
a
m

 O
c
c
u
p
a
n
c
y
 (

P
a
c
k
e
ts

)

RPL−NonStoring

LOAD−ng

Figure 4.21: Maximum RAM occupancy for RPL non-storing and LOADng; P2P applica-
tion.

10
−3

10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

60

70

80

90

100

Delay

C
D

F
 i
n
 %

a
g
e

RPL−NonStoring

RPL−Storing

LOAD−ng

Figure 4.22: End-to-end delay comparison : P2P application.

4. PROACTIVE VERSUS REACTIVE IN LLNS 104

50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Length (bytes)

C
D

F
 o

f
P

a
c
k
e
t
L
e
n
g
th

RPL−NonStoring

RPL−NonStoring with HC

LOAD−ng

RPL−Storing

RPL−Storing with HC

Figure 4.23: Packet length for LOADng, RPL storing and non-storing modes.

4.5.4 Packet length

RPL non-storing mode does not store any route information. While this approach makes

RPL viable in very low memory equipped devices, it has its own disadvantages as the

protocol has to perform source routing via the LBR. We have already seen how it affects

path length in P2P communication. However, another disadvantage may arise from the

source routing header (SRH): the farther away a node is from the LBR, the larger the

data packet SRH needs to be. Figure 4.23 shows the CDF of data packet lengths for all

packets that travel the network. The X axis corresponds to data packet length in bytes,

and the Y axis indicates the corresponding CDF. The application layer data is 50 bytes

in size, as indicated in Section 4.3.1, under traffic pattern. When header compression

is not performed, all the packets also bear a 40 bytes IPv6 header. From the figure

we can clearly see that RPL non-storing mode has a much larger packet length than

LOADng. This can be problematic when RPL operates over low MTU links, such as

IEEE 802.15.4 links with an MTU of 127 bytes. RPL storing mode normally yields packet

lengths comparable to (though slightly larger than) LOADng. However, when header

4. PROACTIVE VERSUS REACTIVE IN LLNS 105

compression is performed with RPL, in accordance to the compression format for IPv6

datagrams over IEEE 802.15.4-based networks in RFC 6282 (63), all packets are well under

the MTU requirement, and thus source routing is possible for LLNs operating with low

MTU links.

It should be noted that this result has been obtained from a set of P2P communications

over the network. However, the variable packet length only arises due to SRH in non-

storing mode from LBR downward the DAG to other nodes. Hence, this result can be

obtained if the communication includes any P2MP traffic.

4.6 Scaling Properties

It is hard to estimate the general behavior of a protocol with respect to network size when

only two topologies have been simulated. To hint at the results not being completely

topology dependent, it is necessary to study a varied range of network sizes. Hence, in

this section we study LOADng’s and RPL’s performance in topologies of different sizes:

45 nodes, 86 nodes, 200 nodes, 500 nodes, 1000 nodes and 2442 nodes.

Network scale has most severe impact on two metrics: control overhead and resource

utilization. Figure 4.24 shows the average control overhead per node for all three protocols,

with varying topology size. The network size is plotted in the X axis in logarithmic scale,

whereas the average control packet is plotted in the Y axis, also in logarithmic scale.

One can observe that the average control packet overhead increases more sharply for

LOADng as the size of the topology grows. Note that although some os these topologies

were created randomly, all link characteristics were gathered from the database created

from a real deployment. Some networks have links that are more stable than others and

this explains why the largest network is found to be most stable one, with the least link

variation, and hence we observe the decrease in average control overhead per node for the

largest network to be less than that of the network with 1000 nodes. Figure 4.25 shows the

total control overhead of all nodes in the network for these three protocols with varying

topology size.

4. PROACTIVE VERSUS REACTIVE IN LLNS 106

10
2

10
3

10
3

10
4

10
5

Network Size

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
c
o
n
tr

o
l
p
a
c
k
e
ts

 p
e
r

n
o
d
e

Comparison of Control Overhead

RPL−NonStoring

RPL−Storing

AODV−LOAD

Figure 4.24: Average control overhead per node with network size.

10
2

10
3

10
5

10
6

10
7

10
8

Network Size

T
o

ta
l
N

u
m

b
e

r
o

f
c
o

n
tr

o
l
p

a
c
k
e

ts
 i
n

 N
e

tw
o

rk

Comparison of Control Overhead

RPL−NonStoring

RPL−Storing

AODV−LOAD

Figure 4.25: Total control packets in network with network size.

4. PROACTIVE VERSUS REACTIVE IN LLNS 107

10
2

10
3

10
3

10
4

10
5

Network Size

M
a
x
im

u
m

 R
a
m

 O
c
c
u
p
a
n
c
y
 (

B
y
te

s
)

Comparison of Maximum Ram load

RPL−NonStoring

RPL−Storing

AODV−LOAD

Figure 4.26: Maximum RAM occupancy in bytes against network size.

As expected, LOADng is more efficient for smaller networks with light traffic load.

The average control traffic volume for these protocols is very similar when the network

size is around 200 nodes, for the case where periodic data polling occurs for each node

every 6 hours. This can also be observed with more frequent statistics reporting for a

smaller topology.

This study also recognizes the scarcity of resources while deploying an LLN, and hence,

it is impossible to overlook the resource utilization while discussing the scalability of the

protocols. With increased number of nodes, LOADng and RPL storing mode will need

to store more entries. However, the difference between the two is that for LOADng all

nodes in the network store the route to an RREQ advertising node, while the routing

table size in RPL storing mode decreases with distance from the collection point. On the

other hand, RPL non-storing mode does not store any route in any node other than the

DAG root. The DAG root or collection point is a much more capable device and therefore

it is not resource constrained, thus we limit the calculation of maximum RAM or packet

4. PROACTIVE VERSUS REACTIVE IN LLNS 108

buffer occupancy to all LLN nodes other than the collection point. Hence, if we consider

the maximum RAM utilization, RPL non-storing mode is the least resource consuming.

Figure 4.26 shows the maximum RAM occupancy in bytes in the Y axis, against the

network scale in a logarithmic X axis.

It might be surprising that despite the fact that RPL non-storing mode does not

store route information, the maximum RAM requirement does increase with the network

size. The reason for this is that a large portion of RAM is utilized to buffer packets,

in either modes of RPL, during each global repair, where DAO packets are propagated

upward to the DAG root, and DAO-ACK packets flow downward to the nodes. This

leads to a congestion near the collection point: nodes with lower rank. This explains the

increasing trend for maximum RAM utilization as observed in Figure 4.26. Note that the

two RPL parameters, DAO ACK TIME and DAO LATENCY, can be tweaked to achieve

less congestion and less buffer requirement. The first parameter describes how long a

node should wait to emit a new DAO for each global repair and/or parent change, and the

second moderates how long to wait for an acknowledgment of emitted DAO packet before

a new one is sent out.

Motivated by the scaling property study, we set out to improve DAO packet emis-

sions in RPL. Next in Section 5.5, we propose a combination of distributed and central-

ized algorithms to control DAO packet emissions by adaptively tweaking the parameter

DAO LATENCY in each node to greatly limit DAO congestion and thus restrict the re-

quirement of larger packet buffers. A preliminary study of our proposed algorithms was

presented in (64) and is here extended and improved by considering a combination of the

previously proposed algorithms.

It should be noted that the two RPL parameters, DAO ACK TIME and DAO LATENCY,

can be tweaked to achieve less congestion and buffer requirement. The first parameter de-

scribes how long a node should wait to emit a new DAO for each global repair and/or a

parent change, and the second moderates how long to wait for an acknowledgment of emit-

ted DAO packet before a new one is sent out. In next chapter, we provide a combination

4. PROACTIVE VERSUS REACTIVE IN LLNS 109

of distributed and centralized algorithms to control DAO packet emission by adaptively

tweaking the parameter DAO LATENCY in each node to greatly limit DAO congestion

and thus restrict the requirement of larger packet buffers.

4.7 Summary

This chapter presented a detailed performance comparison study between RPL (storing

and non-storing node) and LOADng, for several topologies of interest. In particular, results

were collected for a small deployment topology with 86 nodes and a large smart meter

deployment with 2442 nodes. Other topology sizes were also considered in the scalability

study. n the course of this investigation, we also uncovered non-optimal protocol behavior

for the case of large networks and proposed new mechanisms that are shown to improve

control plane congestion, as a result improving network lifetime for large scale LLNs. Some

of the important observations drawn include:

• In terms of control overhead, RPL scales well with the network size. In particular,

for the large deployment of smart grid AMI network with 2442 nodes, RPL provided

connectivity with the border router with much less control cost;

• Control overhead is a function of application data rate for LOADng, where it is

independent for RPL.

• Path quality in terms of hop distance and total ETX path cost is very close for

P2MP and MP2P traffic. However, for P2P traffic, RPL non-storing mode yields a

much longer and more costly (in terms of total ETX path cost) path;

• End-to-end delay is comparable between the two protocols for the topologies studied.

However, in some cases, LOADng may result in a high end-to-end delay between

nodes. This is explained by the reactiveness of the protocol as well as control plane

floods;

4. PROACTIVE VERSUS REACTIVE IN LLNS 110

• Due to control packet flooding and buffering of data packets, LOADng has higher

buffer size requirement.

• RPL tends to consume more buffer space with increase in network size, but proper

scheduling of destination advertisements make RPL scale much better with increas-

ing topology size.

In general, RPL outperformed LOADng for several critical metrics, taking into account

the traffic profile that is typical in LLNs, and only in a few cases, both protocols had similar

performance. It is true that LOADng’s complexity is lower and if run in a topology with

very light traffic load, the protocol will thrive. Such a scenario is however becoming further

and further away from the reality of current LLNs.

5

RPL: Control Plane Congestion

Mitigation in Non-Storing Mode

Urban Low-Power and Lossy Networks (U-LLN) often span a vast geographical region

and consist of thousands of nodes. These networks are characterized by highly time

variant nature of the links, with nodes having a mere few KB of flash memory, and

large-scale deployments. RPL is envisioned as the routing protocol to interconnect smart

objects in the Internet of Things (IoT), in smart grid AMI networks, etc. RPL has been

designed with mainly two modes of operation: storing and non-storing, with the former

implicating nodes’ ability to store routing table information. Non-storing mode relaxes

that requirement, and therefore is deemed more appropriate for large deployments of nodes

with limited memory resources. We have however observed in Section 4.6 that contrary to

our intuition, for very large networks, RPL non-storing mode operation actually requires

large memory and buffer space. Proportional scaling of memory requirements with network

size is disadvantageous for any routing protocol intended to be implemented in vast U-

LLNs or Smart Grid AMI networks.

Investigating the causes for such an non-intuitive behavior from a mode that was

actually designed to cope with the large deployments of nodes with limited capacity,

we determined the culprit: congestion caused by the Destination Advertisement Option

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 112

(DAO) packets from every node to the DAG root during a global repair, or after the DAG

root triggers a network-wide address accumulation using a new DAO Trigger Sequence

Number (DTSN). This congestion is lethal due to a number of reasons: Firstly, upon

congestion, the buffer requirement will increase, leading to high memory requirement to

store packets. Secondly, if high buffer space is not available, DAOs will be lost and the

nodes will be forced to send duplicate DAO packets, which may worsen the situation.

Finally, important and time-sensitive data or alert packets may be lost as well. Therefore,

in order to control the congestion in large deployments of memory constrained nodes, it

is essential to design a suitable approach for DAO message emission. In this chapter, we

investigate the reason why the buffer and memory requirement increases for a protocol that

was actually designed to cope with the large deployments of nodes with limited capacity.

We propose two adaptive algorithms to control DAO emissions in RPL non-storing

mode (one centralized, or controlled by the DAG root, and one distributed). We show

that instead of using a fixed universal timer to control DAO emissions, as recommended

in the standard, making use of an adaptive timer at each node allows the network to

adjust itself to account for topological changes, and adjust each timer in order to avoid

congestion and packet drops, specially near the DAG root, which would also impact data

delivery delay. Sections 5.2 and 5.3 propose distributed and centralized (run at the DAG

root) algorithms respectively to determine the time duration between receiving a global

repair and issuing a DAO packet while no address aggregation is performed. To the best

of our knowledge, this is the first work to reveal the DAO emission issue, and to shed light

on how congestion may occur in a large scale data aggregation network, and further, how

one may avoid it, thus setting up the groundwork for further improvement in the protocol.

5.1 DAO Specific Operation in RPL: Motivation for Opti-

mization

A node generates a DAO packet in the following cases:

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 113

• The parent set or most preferred parent of the node has changed;

• The node has received a new DODAG sequence number, indicating a global repair

of the network;

• The node has received an increased value of DAO Trigger Sequence Number (DTSN)

to refresh downward routes.

As specified in (15), when a new DODAG sequence number or a DAO message from

its own sub-DAG is received, a node schedules a new DAO to be propagated upwards. In

both cases, the node delays the emission of the new DAO with a timer named DelayDAO

Timer. The value of this timer is constant, and its default value is defined by the pa-

rameter DEFAULT DAO DELAY, which is set as 1 second. Once the DAG root receives

information about all the destinations, only then, it will be able to direct P2P or P2MP

packets to the proper route. If it does not have the route to the particular direction, it

must drop the packet for that particular destination.

5.1.1 Trade-off on designing the value of DelayDAO Timer

On one hand, if the value of the DelayDAO Timer is fixed and low, the nodes will quickly

emit DAOs after entering global repair (LBR emitted a DIO with a new sequence number)

and therefore the whole DAG information should take less time to reach the DAG root.

However, within the same DODAG iteration, a node may receive DIOs with better cost

to the DAG root through other nodes. Hence, it may switch parents, forcing yet another

DAO transmission. On the other hand, a large value of the timer will save on the control

plane overhead, but waiting longer at each level of the DAG to generate and/or to forward

a DAO to the DAG root will ultimately lead to much delay for the DAG root to construct

a full routing table of the DAG. Clearly, there is a trade-off between the number of DAOs

transmitted, and the time required by the DAG root to have a full view of the topology.

We have further observed that the effect of the value of DelayDAO Timer, for large

scale networks, becomes more severe than a few extra DAOs being issued or the DAOs

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 114

reaching the DAg root late: intermediate nodes need to store a DAO from their sub-

DAG before relaying it to their parents. In an urban LLN implementation consisting of

thousands of nodes, nodes closer to the DAG root will need large buffer space to hold

DAO packets for later transmission, while these LLN nodes may have only a few KBs of

flash memory. Also, as we will observe later in this section, a constant value of DelayDAO

Timer for all nodes of different ranks, leads to huge amount of DAOs to be transmitted

within a small time duration, therefore creating congestion and further increasing buffer

requirement for nodes closer to the DAG root.

5.1.2 Bottleneck due to a constant value of DelayDAO Timer

Recall that RPL creates a Directed Acyclic Graph (DAG), where links between preferred

parents and children create a spanning tree of the network through which data aggregation

(MP2P) or dissemination (P2MP) takes place. However, the tree thus created, rooted at

the DAG root, is not guaranteed to be a balanced tree, since the number of children under

each parent may not be the same. In this section, in the interest of deriving theoretical

lower bounds, we assume that the tree created by constructing a DAG is a balanced tree,

where every node in the network has B children, and height of the tree is H.

We assume the value of DelayDAO Timer is TDD. The number of DAOs that are

generated from the ith level below a node is Bi. These DAOs arrive after i ∗ TDD time,

with some random jitter that depends on value of Imin. Clearly, in each successive interval

of TDD, the node needs to receive Bi DAO packets, and transmit Bi−1 DAOs. At the

same time, during the next interval of TDD, it needs to buffer Bi DAO packets from its

own sub-DAG. Hence the minimum buffer requirement would increase exponentially for

a node over successive intervals. In Figure 5.1, we show how the time a node’s radio is

busy varies with rank and time after it receives a DIO with DTSN increased or DODAG

sequence number increased. In Figure 5.2, the minimum DAO buffer requirement without

considering the effect of congestion for nodes of different ranks at different times is plotted.

The average number of children is assumed as B = 3, and height H = 8. Note that this

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 115

analysis only provides a theoretical lower bound on the required number of DAO packets

to be buffered. Clearly, in a real deployment, the radio will find other nodes transmitting

at the same time, thus increasing required buffer space.

0
2

4
6

8
100

5

10
0

2000

4000

6000

8000

10000

Rank
Time (in steps of T

DD
)

N
u

m
b

e
r

o
f

T
x
 +

 R
x

Figure 5.1: Total DAO transmissions (Tx) and receptions (Rx) versus time and rank.

We also consider a grid like topology of 1000 nodes with disc model for radio propa-

gation, and assume the DAG constructed by RPL is the Breadth First Search (BFS) tree

for the topology. In general, the number of DAO packets received by a node at the ith

TDD interval will be the same as the number of nodes in the ith level of it’s sub-DAG.

In Figure 5.3, we plot the number of times a node’s radio is busy transmitting or receiv-

ing DAO messages against rank and time interval. Note also that this analysis does not

consider the DAO-ACK or acknowledgement packets that traverse down the DAG, while

some DAOs are being forwarded up the DAG. Clearly, the results presented in this section

are optimistic and provide a lower bound.

From the above results, it is clear that in large networks, during simultaneous route

refresh or global repair, the described mechanism to delay DAO packets may fail due to

high congestion and excessive buffer requirements. Intuitively, the high buffer requirement

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 116

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

Time in steps of value of DelayDAO timer

M
in

im
u
m

 b
u
ff
e
r

re
q
u
ir
e
m

e
n
t
fo

r
D

A
O

 p
a
c
k
e
ts

Nodes at Rank 2

Nodes at Rank 4

Nodes at Rank 6

Figure 5.2: Minimum DAO buffer requirement against time for different ranks.

5

10

15

200

5

10

15

20

0

50

100

150

Rank
Time (in steps of T

DD
)

N
u

m
b

e
r

o
f

T
x
 +

 R
x

Figure 5.3: Total DAO Tx + Rx versus time and rank for the 1000-node grid topology.

stems from the fact that each node needs to store the DAO packets from its sub-DAG

for possible aggregation of DAO routes. However, while implementing non-storing mode,

route aggregation is not performed. Hence, a node should forward a DAO from its sub-

DAG immediately to its parent, as opposite to what is pointed out in (15). Secondly, in

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 117

a particular level in the DAG, the generation time for DAO packets should be distributed

within a time duration to prevent propagation of a high number of DAO packets at the

same time. The time duration should increase exponentially with rank as we have observed

that the number of nodes tends to increase exponentially with rank. This is illustrated

in Algorithm 1, which determines the DelayDAO Timer duration. It assumes that each

node generates a random number amongst an interval that increases exponentially with

the rank of the node.

Algorithm 1 Generation of DelayDAO Timer Value

seed = <EUI_64>/MAC address or node ID

TDD ← random(K ∗BaseRank−1, K ∗BaseRank);

DAOStartTime := CURRENT_TIME;

Arm DelayDAO Timer with value = TDD

Issue a DAO when DelayDAO Timer fires.

The parameter ‘Base’ is intended to coarsely adjust the timing of DAO releases and

to space out the destination advertisements well enough in time, so the packet buffer does

not suffer high increase in leangth. A parameter ‘K’ is used to fine tune the DAO release

timing and better accommodate the available bandwidth. This approach intends to trade

off the delay by which the root node receives destination advertisements for nodes at higher

rank, with in node packet buffer. In the next sections, we will present mechanisms that

will be used to estimate values of the two parameters in this algorithm, ‘K’ and ‘Base’.

5.2 Determining DelayDAO - A Distributed Algorithm

In each node, the algorithm starts with an initial value of the two parameters, ‘K’ and

‘Base’, and uses adaptive filtering to correctly estimate these parameters. The goal of this

algorithm is for the nodes to obtain a value of DelayDAO Timer that minimizes buffer

occupancy in nodes near the DAG root. No node, however, is aware of buffer size in

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 118

any other node but itself. Hence, this problem is different than a classic control theory

problem, as the output and feedback are not directly related. Nodes far away from the

DAG root can only speculate about a possible congestion near the DAG root by examining

the round-trip time of a packet it transmits. In LLNs, not all the data packets need an

acknowledgement back to the sender. Hence, this algorithm uses the round-trip time of

the DAO packets to estimate probable congestion or large buffer size incident. If this

round-trip time is too high, the constant K value is increased by a factor δK , and if it

is lower than a certain time limit, the value of K is decreased by the same factor. If

DAO-ACK-TIME, or the threshold to wait for a DAO-ACK packet, is exceeded, a severe

congestion is surmised, and the value of Base is increased by a factor δB. Clearly, the

base of exponent Base is used for coarse tuning of the value of DelayDAO Timer, where

the constant K is used for fine tuning. The routine upon reception of each DAO-ACK is

described in Algorithm 2.

Algorithm 2 Distributed Parameter Estimator

RoundTripT ime← Current T ime−DAOStartT ime;
if RoundTripT ime > TU ×Rank then

K ← K × (1 + δK);
end if
if RoundTripT ime < TL ×Rank then

K ← K × (1− δK);
end if
if RoundTripT ime > DAO-ACK-TIME then

Base← Base× (1 + δB);
end if
if RoundTripT ime < TB ×Rank then

Base← Base× (1− δB);
end if

The constants TU , TL and TB depend on the transmission time TTx of the DAO packets.

If the DAO packets have a length of LDAO, and the data rate of the radio is given by BR,

we chose these constants as :

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 119

TTx = LDAO
BR

, TU = 8 ∗ TTx , TL = 4 ∗ TTx, TB = 2 ∗ TTx.

5.3 Determining DelayDAO - Centralized Approach

The DAG roots or border routers in LLNs posses much more computational power than

any other node in the network, and also more memory space to buffer packets or store

routing tables. Since all nodes send their DAO message to the DAG root, the root has

an overall view of the whole network. Hence it would be advantageous to outsource the

computations related to the network to the DAG root. In this section, we will present

an algorithm that computes the Base and K parameters upon receiving DAOs from the

network. After computation, these values are distributed in the network during the next

global repair or increased DTSN via a new DIO packet. The values of Base and K can

be added as objects in the DIO packet via a TLV base object.

We define the node rank set as L, which contains for each rank R, (1 ≤ R ≤ H + 1)

the nodes that are at rank R. Also, the DAG root maintains a parent list P to contain

the parent for each node n in N . We define the function Find Rank to intake a node ID,

and returns the rank of the node as illustrated in Algorithm 7.

Algorithm 3 Rank Finder Algorithm

int Find_Rank(node n)

{
int Rank = 0;
P := Parent(node n);

if P == DAG Root then
return(1);

end if
Rank := Rank + Find_Rank(node P);
return(Rank);

};

Upon receiving each DAO, the data structures are updated as in Algorithm 4.

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 120

Algorithm 4 Construction of Node Rank Set

n← Source of DAO message;

Rn ← Find_Rank(n);

L[Rn]← L[Rn] \ {n};
Update Route_Table with new parent for n;

R̂n ← Find_Rank(n);

L[R̂n]← L[R̂n] ∪ {n};

Before each global repair or DTSN increase, the DAG root estimates the parameters

to determine the value of DelayDAO Timer for all nodes in the network as shown in

Algorithm 5.

Algorithm 5 Centralized Parameter Calculator

W ← max({L[i]}) , 1 ≤ i ≤ H;

RW ← R s.t. {L[R] = max({L[i]}) , 1 ≤ i ≤ H + 1;}
Base← exp(lnW

RW
);

K ← max(2 ∗ TTx × i∗ln i
Basei

) , 1 ≤ i ≤ H + 1;

Of course, the centralized and distributed algorithms can be combined to achieve better

convergence. The DAG root via the centralized algorithm can provide the initial parameter

values for Base and K, which can be further tuned by the nodes via Algorithm 2.

5.4 Evaluation of the Algorithms

5.4.1 Simulation setup and metrics

To study the behavior of RPL in different networks in (65), (17)) and ((18), the au-

thors designed a detailed RPL simulator. The simulator was developed using OMNET++

(36) discrete-event simulator engine. Since urban LLNs posses highly time dependent at-

tributes, a fixed probabilistic packet delivery or link condition does not represent typical

challenges in an urban network. Hence, a database to model how link quality varies in

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 121

practically deployed LLNs was created by gathering real link layer data from outdoor and

smart meter deployments. A topology of 2442 nodes deployed in a city was considered

in this study. The deployment is replicated in the simulation by replicating the network

topology and simulating identical temporal variation of the links. Each link in the topol-

ogy ‘picks up’ the corresponding link quality model between the same neighbor pairs in

the original deployment. Therefore, the link’s PDR in simulation varies according to the

gathered traces of the same link with respect to time, creating a “pseudo-replica” of the

real network.

To analyze topology dependency of results, we have also considered random topologies

of 200, 500 and 1000 nodes, where the nodes are distributed in a grid fashion. In all these

networks, each link quality is time-dependent and modeled after temporal variation of a

link in the created database, and the link’s PDR varies with time in the same manner

the link quality varies with time in a real deployed network. All these networks employ a

802.15.4 MAC/PHY model (66), and a CC2420 radio model for TelosB motes. To compute

maximum required buffer space or memory, no buffer drop is simulated. Each simulation

is run for a day (simulation time). The traffic pattern, as provided by smart grid AMI

meter vendors, is described below.

• On-demand operation traffic: The collection point requests reading of index from

each meter in a round robin fashion, which is reported back. Time period between

two readings from same node = F1 which is normally 2 hours, unless otherwise

noted.

• Polling traffic: The collection point retrieves information (statistic report, status,

load curve) from each meter once a day in same fashion as above.

• Traffic due to multicast parameter modification (e.g. new tariff): 50 bytes sent by

the LBR to a set of nodes, multicast, with frequency once a day.

• Traffic due to alarms: From a meter (node) to the LBR and unsolicited, unidirec-

tional and random. 20 bytes of data is sent by each meter to the LBR, once a

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 122

day.

We mainly concentrate on three metrics which are closely related to performance of

RPL when congestion or memory requirement is concerned.

• DAO reach time: Denotes the time required (in seconds) for the DAO of a node to

reach the DAG root after the global repair or new DTSN is issued.

• Packet buffer size: Denotes the number of packets in the node, waiting to be trans-

mitted.

• RAM consumption: Denotes flash memory consumption in bytes to store different

state variables, data structures, parent tables, buffered packets, etc. but not RPL’s

code itself, as it may differ among implementations. However, the results do not

consider the memory consumption of the DAG root since it is not a constrained

device.

We also consider the round trip time of a DAO packet, which is calculated by the time

difference between issuing a DAO packet, and receiving the corresponding acknowledge-

ment.

5.4.2 Simulation results

Figures 5.4 and 5.5 show how the CDFs of DAO reach time vary with time for the

distributed algorithm and the centralize algorithm, respectively, run in the 2442 node

network. These two plots demonstrate that the proposed approaches have the ability to

decrease the DAO reach time, helping the protocol perform better as the time progresses.

Figure 5.6 shows the CDFs of DAO reach time for the proposed algorithms and the default

mechanism described in (15). The default mechanism assumes a DelayDAO Timer value

of 6 seconds. The default value of 1 second for DelayDAO Timer proved to be too low

for the large network, and incurred congestion that inhibits normal operation of the net-

work, hence not used for default mechanism simulation. The centralized approach delivers

DAOs to the DAG root faster than the default mechanism in 95% of the cases, where

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 123

the distributed approach delivers 80% of the DAO packets before the default mechanism.

Clearly, the proposed mechanisms outperform the default one in most cases, besides also

winning in memory consumption, as described next.

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (in seconds)

C
D

F
 o

f
D

A
O

 R
e
a
c
h
 T

im
e

30 minutes

6 hours

12 hours

18 hours

Figure 5.4: DAO reach time for distributed algorithm.

To study memory consumption, we consider different network sizes of 200, 500, 1000

and 2442 nodes. In Figure 5.7, we show how the maximum buffer size in the nodes varies as

the network size grows larger. In Figure 5.8, the maximum amount of memory consumed

is plotted for the three mechanisms, showing the savings brought on by the centralized

and further, the distributed approach. The savings are more significant as the network

scale grows; for the 2442-node network, the default mechanism consumes around 800

KB of memory, whereas only 90 and 30 KB of memory are consumed by the centralized

and distributed approach, respectively. In Figure 5.9, we also observe that the proposed

mechanisms decrease the average control overhead by a small fraction. The small amount

of control overhead savings is a direct result of the reduced number of DAO packets being

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 124

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (in seconds)

C
D

F
 o

f
D

A
O

 R
e
a
c
h
 T

im
e

30 minutes

6 hours

12 hours

Figure 5.5: DAO reach time for centralized algorithm.

10
−1

10
0

10
1

10
2

10
3

10
4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (in Seconds)

C
D

F
 o

f
T

im
e
 d

u
ra

ti
o
n
 f
o
r

D
A

O
s
 t
o
 r

e
a
c
h
 D

A
G

 R
o
o
t

Default Mechanism

Centralized Algorithm

Distributed Algorithm

Figure 5.6: DAO reach time for all mechanisms.

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 125

re-issued due to congestion.

200 Nodes 500 Nodes 1000 Nodes 2442 Nodes
10

0

10
1

10
2

10
3

10
4

M
a
x
im

u
m

 P
a
c
k
e
t
B

u
ff
e
r

O
c
c
u
p
a
n
c
y

Default Mechanism

Centralized Algorithm

Distributed Algorithm

Figure 5.7: Maximum packet buffer size.

In Figure 5.10, we plot the CDF of the round-trip time of DAO packets, which is calcu-

lated as the time difference between issuing a DAO packet and receiving the corresponding

ACK. Clearly, the two algorithms decrease the round-trip time by considerable amount.

These results help establish that the proposed approaches do function as intended in a

large network. We also considered the end-to-end delay experienced by data packets, since

congestion highly effects this metric. In Figure 5.11, it can be observed that the delay

experienced is much smaller for the proposed methods than for the default one.

Also, since we consider a distributed adaptive filtering based approach to obtain the

parameters to determine DelayDAO Timer value, it is important to show that the approach

leads to a stable output with respect to time. In Figure 5.12, we show how the ‘K’

parameter value varies with time for nodes of different ranks in the network. We plot the

average ‘K’ parameter values for all nodes at rank 4, 8, 12 and 16, and observe that all

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 126

200 Nodes 500 Nodes 1000 Nodes 2442 Nodes
10

0

10
1

10
2

10
3

10
4

10
5

10
6

M
a
x
im

u
m

 R
A

M
 O

c
c
u
p
a
n
c
y
 (

in
 B

y
te

s
)

Default Mechanism

Centralized Algorithm

Distributed Algorithm

Figure 5.8: Maximum RAM consumption.

200 Nodes 500 Nodes 1000 Nodes 2442 Nodes
10

0

10
1

10
2

10
3

10
4

10
5

A
v
e
ra

g
e
 C

o
n
tr

o
l
O

v
e
rh

e
a
d
 (

P
a
c
k
e
ts

)

Default Mechanism

Centralized Algorithm

Distributed Algorithm

Figure 5.9: Average control packet overhead.

these values become stable after a few hours of operation.

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 127

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round−Trip Time of a DAO packet Acknowledgement (in Seconds)

C
D

F
 o

f
R

o
u
n
d
−

T
ri
p
 T

im
e

Default Mechanism

Centralized Algorithm

Distributed Algorithm

Figure 5.10: DAO round-trip time.

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (in Seconds)

C
D

F
 o

f
D

e
la

y

Default Mechanism

Distributed Algorithm

Centralized Algorithm

Figure 5.11: Data packet delivery latency.

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 128

0 5 10 15 20 25
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (in Hours)

A
v
e
ra

g
e
 K

 P
a
ra

m
e
te

r
V

a
lu

e

Rank = 4

Rank = 8

Rank = 12

Rank = 16

Figure 5.12: Stability of ‘K’ with time.

5.5 DelayDAO Controller - A Combined Algorithm Pro-

posal to Improve RPL’s Performance

As we have shown in Section 5.1 and 5.1.2, in large networks, when the LBR performs

global repair to gather current routes, high congestion and excessive buffer occupancy is

a by-product of the default RPL operation. This can be illustrated by a simple random

topology of 1000 nodes with disc model for radio propagation. We assume the DAG

constructed by RPL is the Breadth First Search (BFS) tree for the topology, and the

value of DelayDAO Timer is TDD. In general, the number of DAO packets received by a

node at the ith TDD interval will be the same as the number of nodes in the ith level of it’s

sub-DAG. In Figure 5.3, we plot the number of times a node’s radio is busy transmitting or

receiving DAO messages against rank and time interval. Note also that this analysis does

not consider the DAO-ACK or acknowledgement packets that traverse down the DAG,

while some DAOs are being forwarded up the DAG. Clearly, the results presented in this

section are optimistic and provide at best a lower bound.

This high buffer requirement stems from the fact that each node needs to store the

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 129

DAO packets from its sub-DAG for possible aggregation of DAO routes. However, while

implementing non-storing mode, route aggregation is not performed. Hence, a node should

immediately forward a DAO from its sub-DAG to its parent, contrary to what is pointed

out in RPL’s RFC (15). Secondly, in a particular level in the DAG, the generation time

for DAO packets should be distributed within a time duration to prevent propagation

of a high number of DAO packets at the same time. The time duration should increase

exponentially with rank as we have observed that the number of nodes tend to increase in

this manner. This is illustrated in Algorithm 6, which determines the DelayDAO Timer

duration. It assumes that each node generates a random number amongst an interval

that increases exponentially with the rank of the node. The base of the exponent, or

the parameter ‘Base,’ is used for coarse tuning of the timer value, whereas the linear

parameter ‘K’ is used for fine tuning. In the next sections, we will present mechanisms

that will be used to estimate values of ‘K’ and ‘Base’. Each node initialize the value of

these parameters from the value provided by the LBR in DIO packets, and updates them

based on the algorithms described in this section.

Algorithm 6 Generation of DelayDAO timer duration

seed = <EUI_64>/MAC address or node ID

TDD ← random(K ∗BaseRank−1, K ∗BaseRank);

DAOStartTime := CURRENT_TIME;

Arm DelayDAO Timer with value = TDD

Issue a DAO when DelayDAO Timer fires.

In Section 5.2 and 5.3, we proposed two methods to control the value of this timer.

We observed that while a distributed algorithm provides less RAM consumption and

lower DAO round trip time, a centralized algorithm helps the LBR gather the topology

information faster. In this section, we propose a joint mechanism, so that we can retain

the benefit from both approaches in terms of memory consumption and in faster building

the whole DAG. We propose that border routers or collection points run a centralized

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 130

algorithm to estimate the parameters ‘K’ and ‘Base’ from which DelayDAO timer should

be computed at each node. The LBR stays updated on the current network topology

by receiving DAO packets from nodes in the network. The parameters are broadcast

before every global repair of the network, with the help of DIO messages with a new DAG

sequence number from the LBR. Each node, on receiving the estimated parameters, and

based on the round trip time of DAO packets and DAO acknowledgements, makes fine

adjustment to these parameters, to further reduce the DAO congestion, thus limiting the

buffer requirement.

5.5.1 Routine followed at LBR or collection point

Since all nodes send their DAO message to the DAG root, the root has an overall view

of the whole network. Hence it would be advantageous to outsource the computations

related to the network to the DAG root. In this section, we will present an algorithm that

computes Base and K upon receiving DAOs from the network. After computation, these

values are distributed in the network during the next global repair or increased DTSN via

a new DIO packet. The values of Base and K can be added as objects in the DIO packet.

We once again define the node rank set L, which contains for each rank R, (1 ≤ R ≤

H + 1), the nodes that are at rank R. Also, the DAG root maintains a parent list P that

contains the parent for each node n in N . We define the function Find Rank to intake a

node ID, and returns the rank of the node, as described in Algorithm 7. As illustrated in

the flowchart in Figure 5.13, upon receiving each DAO, the data structures are updated

as in Algorithm 8. Before each global repair or DTSN increase, the DAG root estimates

the parameters to determine the value of DelayDAO Timer for all nodes in the network,

as shown in Algorithm 9.

5.5.2 Routine followed at nodes other than LBR

Each node, on their first global repair, sets the parameters with the values of the received

DIO packets. As shown in the flowchart in Figure 5.14, nodes use adaptive filtering to

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 131

Algorithm 7 Rank Finder

int Find_Rank(node n)

{ int Rank = 0;
P := Parent(node n);

if P == DAG Root then
return(1);

end if
Rank := Rank + Find_Rank(node P);
return(Rank); };

Figure 5.13: Routine at LBR - centralized parameter estimation.

Algorithm 8 Construction of Node Rank Set

n← Source of DAO message;

Rn ← Find_Rank(n);

L[Rn]← L[Rn] \ {n};
Update Route_Table with new parent for n;

R̂n ← Find_Rank(n);

L[R̂n]← L[R̂n] ∪ {n};

correctly estimate these parameters as they continue to receive acknowledgements from the

LBR. On reception of DAO-ACKs, nodes use the round trip time to decrease congestion,

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 132

Algorithm 9 Centralized Parameter Calculator

W ← max({L[i]}), 1 ≤ i ≤ H;

RW ← R s.t. {L[R] = max({L[i]}), 1 ≤ i ≤ H + 1;}
Base← exp(lnW

RW
);

K ← max(2 ∗ TTx × i∗ln i
Basei), 1 ≤ i ≤ H + 1;

as shown in Algorithm 10. When global repair is performed, nodes do not give away their

learned parameters, but adjust according to the received parameters in the DIO, as shown

in Algorithm 11.

Figure 5.14: Routine followed at nodes - distributed parameter tuning.

The constants TU , TL and TB depend on the transmission time TTx of the DAO packets.

If the DAO packets have a length of LDAO, and the data rate of the radio is given by BR,

we chose these constants as:

TTx = LDAO
BR

, TU = 8 ∗ TTx, TL = 4 ∗ TTx, TB = 2 ∗ TTx.

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 133

Algorithm 10 Distributed Parameter Estimator - On DAO-ACKs

RoundTripT ime← Current T ime−DAOStartT ime;
if RoundTripT ime > TU ×Rank then

K ← K × (1 + δK);
end if
if RoundTripT ime < TL ×Rank then

DAO ACK TIME ← αD ×DAO ACK TIME + (1− αD)×RoundTripT ime
K ← K × (1− δK);

end if
if RoundTripT ime > DAO ACK TIME then

Base← Base× (1 + δB);
end if
if RoundTripT ime < TB ×Rank then

DAO ACK TIME ← αD ×DAO ACK TIME + (1− αD)×RoundTripT ime
Base← Base× (1− δB);

end if

Algorithm 11 Distributed Parameter Estimator - On DIOs

KNew ← K value received in DIO TLV.
K ← αK .K + (1− αK)×KNew

Base← αB .Base+ (1− αB)×BaseNew

5.5.3 Evaluation of proposed approach

We simulate both the default specification of RPL, with a constant timer value, and

our proposed method. We mainly concentrate on aspects of congestion, such as RAM

occupancy, data packet delivery delay, etc. Figure 5.15 shows the CDF of data delivery

delay and we see that the proposed mechanism drastically improves the latency with which

the data packets are delivered. This is an obvious outcome of mitigated congestion, as

congestion causes both data and control packet to be buffered.

In Figure 5.16, we plot the maximum number of packets buffered with network size and

see that the propose mechanism achieves a significant reduction, with a gain in buffer size

as high as 15× for the largest network. The gain increases as network size increases, a trend

which is also observed for RAM consumption, as shown in Figure 5.17. Less use of buffered

packet leads to less use of precious memory, and the proposed mechanism consumes only

40 KBytes of memory as opposed to the default mechanism, which consumes ∼ 700 KB

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 134

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (in Seconds)

C
D

F
 o

f
D

e
la

y

Default Mechanism

Combined Algorithm

Figure 5.15: CDF of data delivery delay.

of RAM.

200 Nodes 500 Nodes 1000 Nodes 2442 Nodes
10

0

10
1

10
2

10
3

10
4

Network Size

M
a
x
im

u
m

 B
u
ff
e
r

O
c
c
u
p
a
n
c
y
 (

in
 P

a
c
k
e
ts

)

Default Mechanism

Combined Algorithm

Figure 5.16: Maximum buffer occupancy against network size.

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 135

200 Nodes 500 Nodes 1000 Nodes 2442 Nodes
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Network Size

M
a
x
im

u
m

 R
A

M
 O

c
c
u
p
a
n
c
y
 (

in
 B

y
te

s
)

Default Mechanism

Combined Algorithm

Figure 5.17: Maximum RAM occupancy against network size.

In Figure 5.18, we plot the CDF of the round trip time required by the DAO packets.

Achieving a low round trip time, on one hand, shows signs of congestion free network.

At the same time, a low round trip time also prevents unnecessary duplicate DAOs to be

resent to the DAG root, thus saving on important control plane bandwidth. We again

observe how the propose mechanism improves the round trip time when compared to the

default RPL mechanism.

As it can easily be perceived, the Destination Advertisements (DAO) packets are sched-

uled in such a way that a congestion is avoided. By avoiding this congestion, we achieve

less delay in order for data packets to reach the root, and less round trip time of DAO

packets, which helps with the unnecessary issuance of destination advertisements. How-

ever, the price we pay by deploying this mechanism is high discovery time for some nodes,

mostly the ones that are farthest from the root node. In Figure 5.19, we show the CDF

of time taken by each DAO packet to reach the LBR.

As we observe, for around 85% nodes, DAO packets in the proposed method reach the

LBR earlier than the proposed default method. However, the LBR learns about 15% of

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 136

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round−Trip Time of a DAO packet Acknowledgement

C
D

F
 o

f
R

o
u

n
d

−
T

ri
p

 T
im

e

Default Mechanism

Combined Algorithm

Figure 5.18: CDF of DAO round trip time.

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in Seconds

C
D

F
 o

f
T

im
e
 d

u
ra

ti
o
n
 f
o
r

D
A

O
s
 t
o
 r

e
a
c
h
 D

A
G

 R
o
o
t

Default Mechanism

Combined Algorithm

Figure 5.19: CDF of time taken by DAOs to reach the DAG root.

nodes in the network at a later point of time than with the default mechanism. These

15% of nodes are the ones that have large ranks. In other words, the proposed method

5. RPL: CONTROL PLANE CONGESTION MITIGATION IN
NON-STORING MODE 137

helps the LBR learn about nodes near itself faster, but for some nodes with large ranks

it consumes more time, which is the price we pay for congestion avoidance. However, as

DAO includes information on a node’s parents only when it is generated, the information

learned is not outdated.

5.6 Summary

In this Chapter, two mechanisms are proposed to resolve the congestion and high memory

and buffer requirements in the standard RPL non-storing mode implementation, which

makes use of a fixed, universal DelayDAO Timer. The proposed mechanisms are even more

useful in topologies where the data collection point is at the center of the deployment, and

where the number of nodes exponentially grows with distance from the root. It can be

observed, that the centralized approach provides less time for the DAG root to gather

routing information for the whole network than the distributed algorithm. Both proposed

mechanisms provide fairly low RAM usage, especially in large topologies. These algorithms

also incur less delay for data packet delivery by controlling the control plane congestion.

From a high level overview, the proposed approaches in this study trades off the delay that

Destination Advertisements (DAO) from higher rank nodes suffer with the buffer size in

nodes with lower rank (near the DAG root) and end-to-end latency for data packets.

Different approaches can be considered which may use the information from the DAO-

ACK packets to indirectly detect large buffer occupation and congestion near the DAG

root or low rank nodes in RPL non-storing mode. This information may be used to delay

transmission of DAO packets to reduce buffer requirement in LLNs. Different congestion

control techniques for transport protocols exist in the literature, which might shade new

light or hint at new directions to this problem. Nevertheless, it is of most importance to

devise a suitable technique to schedule DAO packets in RPL for large networks.

6

RPL: DAO Propagation in Storing

Mode

In this chapter, we will introduce a new packet format for DAO aggregation that does not

violate RPL standard message format and adds to the original DAO Base Object defined

in the RFC. Also, the message format should be able to handle compressed address format

in case header compression is applied to decrease overall packet size. We will introduce

an approach for DAO packet generation, storage and forwarding. At the same time, we

also propose an aggregation method for DAO packets in storing mode.

6.1 DAO Aggregation and Delay Method in Storing Method

In RPL storing mode, DAO packets are not unicast to the DAG root, but are rather

advertised to the node’s parents. Thus, these DAO packets reach the DAG root in a

hop-by-hop fashion, being acknowledged at every single hop. Nodes in storing mode may

or may not aggregate DAOs from their subtree. If aggregation of DAO packets is not

performed, we propose the storing mode to employ similar technique as non-storing mode

for DAO generation. In absence of prefix aggregation, a node in storing mode has to

forward the same number of DAO packets as in non-storing mode for the same topology.

Hence, the same centralized approach as in non-storing mode is expected to provide similar

6. RPL: DAO PROPAGATION IN STORING MODE 139

benefits in RPL storing mode. The proposed distributed approach, however, cannot be

applied to storing mode, as in this mode the DAOs are acknowledged at every single hop,

and no end-to-end acknowledgement is available.

As described in (15), a node should delay sending the DAO message in order to aggre-

gate the DAO information from other nodes for which it is a DAO parent. RPL non-storing

mode requires the parent node to send their DAO packets before the children, so the value

of DelayDAO Timer should increase with the node’s rank in this mode of operation. How-

ever, aggregation of destination addresses will surely get hurt by such a mechanism. The

default mechanism of a constant universal timer will lead the nodes with higher rank to

release their DAO later, thus harming the aggregation process. For aggregation to be suc-

cessful, nodes of farthest distance (in rank) from the DAG root should release their DAO

first. In an ideal situation, a node should wait till it receive DAOs from all nodes in its

subgraph, aggregate them as much as possible, and finally send it to its parent. Intuitively,

DAO aggregation needs a mechanism where the value of the DelayDAO Timer decreases

with the rank. However, the RPL standard ((15)) does not specify rules on aggregated

DAO packet generation and processing.

6.1.1 Aggregated DAO packet format

In (15), Type = 0x05 is reserved for a target option that adds to a DAO base object.

This target option carries the destination address in a DAO packet. Type values within

the range 0x01− 0x09 are reserved. We define a new DAO option, called RPL Aggregated

Target Option, which is defined by the type value 0x10. The Aggregated Target Option

possesses the same format as the target option originally defined. However, 4 bits amongst

the 8 unused flag bits are used as a new field, denoted as CmprT. Our proposed RPL

Aggregated Target Option is illustrated in Figure 6.1.

In our proposed RPL Aggregated Target Option, the CmprT field defines the level of

compression applied to each target address, so that each target has an address length of

(16 − CmprT). As the possible values of CmprT range between 0 and 15, the length of

6. RPL: DAO PROPAGATION IN STORING MODE 140

Figure 6.1: Proposed DAO target option for aggregation.

each address field in the Aggregated Target Option may vary between 1 and 16 octets.

The number of targets present in the aggregated DAO can easily be calculated as:

n← (Prefix Length−4)
(16−CmprT)

We define MaxTarget as the maximum number of target destination addresses that

may be accommodated in a single aggregated DAO. Clearly, if the Maximum Transmission

Unit (MTU) of a network is known, and DAOOverhead defines the overhead associated

with a DAO packet without the ‘Target’ field, MaxTarget can be calculated as:

MaxTarget← (MTU−DAOOverhead)
(16−CmprT)

We will explain this with a couple of examples. For 802.15.4 links, the MAC layer

presents a maximum of 102 bytes of payload to the network layer. If we consider DAO

packets with the proposed aggregation option, it can be shown that the total overhead

incurred is 64 bytes without the ‘Target’ field. If the targets include a full IPv6 address

of 16 bytes, the scope of aggregation is clearly, very limited. However, we can use header

compression as in (63), or use a compressed address field of 2 bytes instead of the full

16 bytes. Using a 2 bytes address field and unchanged header format, a maximum of

(102−64)/2 or 19 destinations can be aggregated in a single DAO packet. Also, 802.15.4g

(67) has recently been amended to support Smart Utility Networks (SUN). 802.15.4g can

handle a maximum frame-size of 2047 bytes, well over IPv6 defined maximum frame-size

6. RPL: DAO PROPAGATION IN STORING MODE 141

of 1280 bytes. If we consider a full IPv6 packet with an MTU of 1280 bytes, even with

uncompressed header and uncompressed address field of 16 bytes length, a single DAO may

support up to 76 destinations together. However, link PDR may decrease with increased

packet size, forcing an upper bound on MaxTarget for certain environments.

6.1.2 DAO aggregation algorithm

The following notation and parameters are used in the algorithm:

• SubTree: The number of valid routes in a node’s routing table;

• R: Current rank of the node;

• ReleaseQ: A queue of unreleased destinations present at each node, with a timestamp

of when the destination is added;

• TL = 4 ∗ TTx, as defined in Section 5.2.

Upon receipt of a new DODAG sequence number or a new DTSN, Algorithm 12 is

run to determine the generation of a DAO packet by the node. The DelayDAO timer is

inversely proportional to rank, as discussed earlier in this section.

Algorithm 12 Generation of DelayDAO Timer Value

seed = <EUI_64>/MAC address or node ID

TDD ← random(TL

R−1 × SubTree , TL

R × SubTree);
Arm DelayDAO Timer with value = TDD.

Enque (self, CURRENT_TIME) to ReleaseQ.

when DelayDAO Timer fires.

Clearly, even when a DAO is generated, it is not forwarded immediately. A node

always keeps an eye on its ReleaseQ, to check if a destination is waiting too long to be

transmitted. The routine is described in Algorithm 13.

6. RPL: DAO PROPAGATION IN STORING MODE 142

Algorithm 13 ReleaseQ Checker

T ← Timestamp of first entry in ReleaseQ.

if T − CURRENT TIME ≥ TL

R × SubTree then

if Size of ReleaseQ < MaxTarget then

Aggregate all destinations in a DAO.
else

Aggregate MaxTarget destinations in a new DAO.
end if

end if

Upon receipt of a DAO packet from another node, Algorithm 14 defines the rules for

DAO aggregation and forwarding.

Algorithm 14 Destination Aggregation and DAO Emission

if n < MaxTarget− 1 then
Extreact each destination, D.

update route table with D.

Enqueue each (D, CURRENT TIME) into ReleaseQ.

if Size of ReleaseQ ≥ MaxTarget then

Aggregate MaxTarget destinations in a new DAO.
end if

else
Update route table with all destinations.

Forward DAO Packet as is, without inserting it into ReleaseQ.

end if

6.2 RPL Storing Mode Evaluation

We used a similar setup and terminology as in Section 5.4. However, along with 802.15.4

links, we implemented 802.15.4g as well, to observe the effect of the maximum allowable

aggregation. Simulations with 802.15.4 links consider a compressed address field of 2 bytes,

whereas no compression is employed for 802.15.4g links. To be noted, even if 802.15.4g

allows a maximum frame size of 2047 octets, a DAO packet in our simulation may have a

maximum frame size of 1280 octets, as RPL is designed to run under IPv6.

6. RPL: DAO PROPAGATION IN STORING MODE 143

In Figure 6.2, we plot the CDF of DAO reach time value for both, default mechanism

and proposed modification for storing mode. This result shows how the proposed algo-

rithm, with the help of aggregation, improves the DAO reach time helping them reach the

DAG root faster than with the default mechanism. It should be noted that with increase

in MTU, nodes wait longer to aggregate and transmit the DAO, and hence, the DAO

reach time also increases.

10
−1

10
0

10
1

10
2

10
3

10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time in Seconds

C
D

F
 o

f
T

im
e

 d
u

ra
ti
o

n
 f

o
r

D
A

O
s
 t

o
 r

e
a

c
h

 D
A

G
 R

o
o

t

Default Mechanism

Aggregation Algorithm

Aggregation w/ 802.15.4g

Figure 6.2: DAO reach time for both mechanisms.

We next consider 5 networks of size 86, 200, 500, 1000 and 2442 nodes to evaluate

topology-dependency of the results. In Figure 6.3, we show how the proposed mechanism

benefits RPL in terms of maximum memory consumption. As aggregation includes multi-

ple addresses in a single DAO, the number of control packets is definitely smaller than with

the default mechanism, but each packet has larger size. Hence, to be fair, in Figure 6.4

we plot the average control overhead (in bytes) for the two mechanisms for networks of

different size.

We also considered the end-to-end delay experienced by data packets in the large

6. RPL: DAO PROPAGATION IN STORING MODE 144

86 Nodes 200 Nodes 500 Nodes 1000 Nodes 2442 Nodes
10

0

10
1

10
2

10
3

10
4

10
5

M
a

x
im

u
m

 R
A

M
 O

c
c
u

p
a

n
c
y
 (

in
 B

y
te

s
)

Default Mechanism

Aggregation Algorithm

Figure 6.3: Maximum RAM consumption.

86 Nodes 200 Nodes 500 Nodes 1000 Nodes 2442 Nodes
10

0

10
1

10
2

10
3

10
4

10
5

A
v
e

ra
g

e
 C

o
n

tr
o

l
O

v
e

rh
e

a
d

 (
in

 B
y
te

s
)

Default Mechanism

Aggregation Algorithm

Figure 6.4: Average control packet overhead.

2442-node network, as we did for the non-storing mode algorithms. In Figure 6.5, it

can be observed that the delay experienced is much smaller for the proposed method with

aggregation than for the default one. Note that the proposed aggregation method does not

aggregate any data packet. Still, by reducing congestion and thus providing more resource

6. RPL: DAO PROPAGATION IN STORING MODE 145

to the network, the proposed approach provide less delay for 65% of the packets. As

observed, the maximum delay experienced by any data packet for the proposed approach

is also much smaller. Clearly, the link MTU does not have a big effect on data delivery

once the congestion is mitigated, as we can observe the two MAC/PHY models of 802.15.4

provide very close data delivery delay.

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (in Seconds)

C
D

F
 o

f
D

e
la

y

Default Mechanism

Aggregation w/ 802.15.4g

Aggregation Algorithm

Figure 6.5: Data packet delivery latency.

6.3 Summary

In this Chapter, a DAO generation and aggregation mechanism is proposed for RPL

storing mode, which is observed to provide the DAG root with faster congregation of

addresses in the network, less control overhead and faster delivery of data packets, by

lowering DAO congestion. Here it can be observed, that using higher link MTU (such as

in 802.15.4g) does not necessarily provide high performance benefits. Nodes waiting to

aggregate destination address information causes further delay and improves the overall

6. RPL: DAO PROPAGATION IN STORING MODE 146

control overhead by a small fraction. However, the DAO generation algorithm for storing

mode of RPL implementation is still able to provide a fraction of improvement in packet

buffer consumption.

7

Evolution of RPL: Towards Load

Balanced LLNs

The vision of the Internet of Things (IoT) brings together networks and thousands of

battery operated wireless devices to share common resources. Due to their large scale,

these networks employ hierarchical routing along with IPv6, and a border router to connect

to the Internet. Distribution of data traffic is essential in order to avoid congestion and

hot spots in the vicinity of the gateway or border routers, as well as to decrease/balance

energy expense of the devices. Therefore, load balancing is crucial in such deployments,

and accordingly there have been numerous attempts to achieve balance in traffic forwarding

in order to decrease congestion and packet drops.

RPL, however, was not designed to achieve load balancing. In RPL, some nodes

may be used more often than others for forwarding, increasing the load in some branches.

Urban or forest deployments, however, typically have high node density, with many detours

available. Similarly, in smart grid networks, many AMI meters in the same building and

locality interconnect to form a network of nodes with high degree of connectivity. Hence,

a node may chose amongst many alternative parents to send data to the base station,

and vice-versa. By distributing the traffic load across available links, load balancing may

achieve less hot spots and greater network lifetime by distributing energy expense.

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 148

The contributions of this chpater are as follows:

• Firstly, this work defines a quantitative metric to measure load imbalance for any

instance of data aggregation to a single sink. The metric assumes periodic data

generation by all the nodes in the network and can be generalized for uneven traffic

generated by the nodes;

• Secondly, this work proposes techniques to minimize the imbalance metric over time,

using only a very limited subset of neighbors or parents, consistent with the RPL

protocol. The proposed approach should not consume any extra control overhead

other than the control message exchange already needed for RPL to operate.

• Finally, to show in Chapter 8 how this can be achieved via proposed HIPC architec-

ture.

7.1 Related Work

There have been numerous attempts to achieve balance in traffic forwarding in order to

decrease congestion and packet drops. In wireless sensor networks (WSN) in particular,

these approaches can be broadly classified into two categories. One on category, load

balancing is achieved through clustering algorithms, varying the cluster size and/or cluster-

head over time to balance energy expense of the nodes, such as in (68, 69, 70, 71, 72). There

are also heuristics that try to alternate among possible next-hop nodes to balance energy

expense (73, 74). The second category includes approaches where the whole topology

of the network needs to be known in advance, such as in (75, 76, 77, 78). There is a

large body of literature concentrating on energy efficient clustering techniques in general

(79, 80, 81).

However, there exists a large gap between the load balancing techniques that currently

exist for WSNs and a practical approach that can be deployed for large scale LLNs and

the IoT. Traffic is sensing or event driven in WSNs, whereas for urban LLNs, such as

smart grids, they are mostly periodic. Many routing algorithms exist for WSNs which

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 149

provide best routing path between two peers. In large scale LLNs, due to the incapability

of nodes storing routing tables, P2P routing is possible through some capable nodes only,

and generally by source routing. At the same time, clustering approaches need variable

transmission power, where cluster heads transmit with higher energy. This leads to higher

energy consumption for cluster heads, hence leading to quick depletion of energy and

therefore the need for cluster head rotation. Also, for a base station to either know the

full topology or neighbor set of its LLN deployment or all link details, every node needs

to advertise all of its available link states. Given the temporal characteristics of LLNs,

this approach leads to prohibitive overhead, and therefore is impractical. Normally, only

a few neighbors may be used for data forwarding with confidence. Approaches that try to

achieve load balancing in node via several optimization methods, linear programming etc.,

are not practically applicable in LLNs and most of the WSNs either. In LLNs or Internet

of things, nodes have very low memory (A few KBs of flash and RAM) and computational

capacity (e.g. 8 MHz processor in TI MSP430 processor used in TelosB motes). This

sets up a platform for a load balancing technique which does not consume extra control

overhead, does not require the sink or central node to know the full topology, and/or

requires minimal processing for in-network nodes.

Moreover, existing networking load balancing literature almost always lacks any quan-

titative measure for balance or imbalance of traffic load in the network. Currently, given

two or more aggregation tree instances for the same network, there is no way to quantita-

tively define which instance can achieve more balance in traffic load than others. Measure

of load balance, or lack thereof, has mostly been determined by energy expense or network

lifetime. Clearly, load balancing has been pursued without quantitatively being defined.

The contributions of this work are mainly two-fold.

• Firstly, this chapter defines a quantitative metric to measure load imbalance for any

instance of data aggregation to a single sink. The metric assumes periodic data

generation by all the nodes in the network and can be generalized for uneven traffic

generated by the nodes;

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 150

• Secondly, this work proposes techniques to minimize the imbalance metric over time

for an LLN deployment, using only a very limited subset of neighbors or parents,

consistent with the RPL protocol. The proposed approach does not consume any

extra control overhead other than the control message exchange already needed for

RPL to operate. When used in conjunction with RPL, this technique can achieve

load balance in a LLN deployment, aiding in network lifetime. Performance results

are shown for real LLN links.

Section 7.2 introduces the new load imbalance metric, and shows how it really reflects the

imbalance in different branches of data aggregation. In Section 7.4, we show how a greedy

method to minimize the imbalance factor can be integrated with RPL for operations in

LLNs. Section 7.5 shows the effectiveness and improvement of proposed method with

basic RPL implementation and comparison with Brute Force optimum in smaller scale

7.2 A Metric to Define Load Imbalance

7.2.1 Example of balanced collection tree

Figure 7.1: A DAG created by RPL. Figure 7.2: Example of unbalanced par-
ent selection.

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 151

Figure 7.3: Example of balanced parent selection.

To approach the problem of load balancing in LLNs, one needs to create a data collec-

tion tree as balanced as possible. Clearly, not all nodes will carry same data traffic load in

the network. However, the intuitive idea behind load balancing is that nodes at the same

level in the DAG or collection tree, or same hop distance from the root node, should carry

as equal volume of traffic as possible. As an example, consider a DAG constructed by

RPL in Figure 7.1. RPL often lets nodes select a preferred parent that is advertised first,

and hence results in a tree as depicted in Figure 7.2. If we consider the three nodes from

left to right at rank 2, we observe that they provide route for 12, 3, and 7 destinations in

the network, respectively. Clearly, the leftmost node in the three will deplete its energy

much sooner than the middle one. On the other hand, the same DAG created by RPL

may provide a preferred parent selection that yields the tree shown in Figure 7.3. Such an

approach is most desirable for any data collection network. We propose to minimize the

difference between the traffic load handled by the nodes of the same rank for every level

in the DAG.

7.2.2 Imbalance factor

We define the estimator of balanced load, for a given level or rank in the collection tree, to

be the average traffic each node in that rank forwards. To minimize load imbalance, one

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 152

therefore needs to minimize the variance of traffic load amongst nodes of a given rank. We

assume NR refers to the number of nodes in the network at rank R, Si denotes the number

of nodes accessible through node i from the root or collection point, and SR denotes the

average number of routes available for all the nodes at rank R. Basically, SR is the number

of nodes at ranks R or greater, divided by NR. For the node i, the deviation from balanced

load can be given as |(Si − SR)|. For the rank R, we thus have NR samples of such load,

and our objective is to minimize the variance among them. Hence, we define the mean

square error of traffic load at any level of the DAG as an estimator of load imbalance at

that given level. Thus, the load imbalance factor at rank R in the network is,

IR =
1

|NR|
∑
i∈NR

(Si − SR)2 (7.1)

Since we are using the mean square error of load to estimate load imbalance, we see that

the higher the number of nodes in a particular rank or level of the tree, the lesser will be

the effect of imbalance, as traffic is distributed amongst more forwarders, following our

intuition of load balancing. If the network has a height of H, the total imbalance of data

traffic of the network can be defined as

I =
∑

2≤R≤H+1

IR =
∑

2≤R≤H+1

1

|NR|
∑
i∈NR

(Si − SR)2 (7.2)

Looking back at our previous example, the tree of Figure 7.2 produces an imbalance

of I2 = 13.56 at rank 2, and a total imbalance of I = 28.74, whereas the tree at Fig-

ure 7.3, produces I2 = 0.22 and I = 7.12, respectively. Also, a complete balanced tree

(binary, tertiary, ... etc.), would produce an imbalance of 0 at every level and for the

overall tree. Clearly, a routing/data collection tree that minimizes the metric I would

be the most balanced tree for the specific network. In this definition, we have assumed

all destinations generate equal traffic, and hence the number of nodes accessible through

a node is considered equivalent to the traffic load. However, the definition can be easily

generalized to include different traffic rates, where the total generated traffic in the subtree

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 153

replaces subtree size in the two equations. The leaf nodes will have subtree size equal to

the generated traffic by them instead of 1.

7.3 How Hard Is It to Minimize Imbalance?

Let us define a ‘Parent Set’ of a node, to be the set of forwarders, through which the node

can access the root or collection point and vice-versa. This Parent Set may be size bound

by the implementation (e.g. advertising up to 3 parent nodes to the root node) or may be

bound by the highest node degree ∆. Let’s assume, the upper bound on Parent Set is K.

For a network of N nodes, we may have up to KN combinations of how parents may be

assigned and thus a naive polynomial time assignment is not possible.

Let there be an imbalance function I(S), where S denotes the subtree set for all nodes.

The input matrix, P is the N × N parent option set where each element pij of P is 1 if

node i is a candidate parent for node j, or 0 otherwise. Also, Let X be the N ×N output

parent assignment matrix, so each element of X, Xij will be equal to 1 if node i is the

chosen parent for node j, or 0 otherwise. Hence, the problem to minimize load imbalance

can be formulated as follows:

minimize I(S), where S = {S1, S2, · · · , SN},

Si =
∑
j∈N

Sj ·Xij +Xii ∀i ∈ N, i 6= j

such that,
∑
i∈N

Xij · pij = 1 ∀j ∈ N, i 6= j

and Xii = 1 ∀i ∈ N

(7.3)

Since all elements in matrices X and P are integer, more specifically 0 or 1, this is

clearly an example of 0 − 1 Integer Programming, a well known NP-hard problem. Note

that this analysis may also be generalized for unequal traffic generated by each node. In

that case, Xii will be equal to the traffic generated by node i. In our case, the imbalance

function, I(S) is given by Equation 7.2, which is a non-linear function. Hence, balancing

the load turns out to be a NP-hard problem.

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 154

7.4 Implementation of Load Balancing in LLNs

We propose a few modifications to RPL in order to accomplish load balancing for LLNs:

firstly, each node, while implementing RPL non-storing mode, should advertise a Parent

Set instead of a single parent to the DAG root or LBR. This is achieved by DPM -

Parent Selection module in the proposed HIPC architecture. In our implementation, nodes

advertise a maximum of three parents to the DAG root. Of course, if a node is reachable

only through a single parent, it advertises the only parent. Secondly, after gathering

information about the whole DAG, the DAG root should run a heuristic that assigns a

parent to each node from the Parent Set provided by that node. This process is performed

in the LBR by CPM - Traffic Engineering (CPM-TE) Module. The advertised parent

set might be subject to policy enforcement module before running any load-balancing

heuristics, though. Our proposed heuristic to minimize the load imbalance, is given in

Algorithm 2 and 16. The CPM-TE module interacts with the CPM - DAO Collector

module to gather assigned parent set ia DAO packets, and send DAO-ACKs to inform

every node about their assigned parent, that should be used for periodic or bulk data

reporting.

The following data structures are needed to run the algorithm:

1. SubSize(j) = Subtree size of a node j.

2. AvgSubSize(R) = Average subtree size for nodes at rank R.

3. Child(j) = Set of all nodes that have node j as a parent, preferred or backup.

4. PrefChild(j) = Set of all nodes that have node j as preferred parent.

5. Par(n) = Preferred parent of node n.

Periodically, as the LBR collects the parent information of all nodes in the network, it

runs the optimization methods to choose the best parent for each node for balance data

collection. In the next period, if the obtained Parent Set (P) covers previously detected

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 155

Algorithm 15 High Level Balancing - I1

for R = H + 1 downto 2 do

for Node j ∈ N(R) do

Diff(j) = SubSize(j)−AvgSubSize(R)
end for

Create N Sorted(R) as sorted list of N(R), increasing order of Diff(j), j∈ N(R)

Curr(N Sorted(R)) = top(N Sorted(R))

while dec do

dec = Compensate(N Sorted(R));

end while
end for

Algorithm 16 Compensate(N Sorted(R)) - I2

1: if N Sorted(R+1) is empty then
2: return(false)

3: end if

4: for node j = Curr(N Sorted(R)) up to end(N Sorted(R)) do

5: Curr(N Sorted(R)) = Position of j in N Sorted(R)

6: Create Candidate Set V = {Child(j) \ PrefChild(j)}, sorted w.r.t subtree size

7: Find node n ∈ V with maximum subtree size, s.t. n is not marked AND
SubSize(n) ≤ (Diff(Par(n))−Diff(j))/2

8: Assign node n from Par(n) to j as below:

9: PrefChild(Par(n)) = PrefChild(Par(n)) \ {n}
10: Diff(Par(n)) = Diff(Par(n))− SubSize(n)

11: SubSize(Par(n)) = SubSize(Par(n))− SubSize(n)

12: INSERT Par(n) to new position in N Sorted(R)

13: Par(n) = j

14: PrefChild(j) = PrefChild(j) ∪ {n}
15: Diff(j) = Diff(j) + SubSize(n)

16: SubSize(Par(n)) = SubSize(Par(n)) + SubSize(n)

17: INSERT j to new position in N Sorted(R)

18: Mark n

19: N Sorted(R+ 1) = N Sorted(R+ 1) \ {n}
20: return(true)

21: end for

22: if Curr(N Sorted(R)) == end(N Sorted(R)) then

23: return(false)

24: end if

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 156

best set (B), the LBR advertises the same. However, if B 6⊂ P , the LBR should run the

heuristic again.

7.4.1 Runtime analysis of proposed method

Since we are providing a greedy heuristic for an NP-hard problem, it is important to

provide the runtime complexity. We propose the following lemmas in order to establish

the worst-case runtime complexity of the whole heuristics.

Lemma 1: For any rank R in the DAG / tree, ‘compensation’ (Lines 8 − 20 in Al-

gorithm 16) is executed at most NR+1 times, where NR+1 is number of nodes at rank

R+ 1.

Proof: It is to be noted, that a node is unmarked and marked in ‘Compensate’

function a maximum of 1 time. A node, if used to compensate between two parents in

algorithm 16, is not used again for compensation purpose. Also, in each compensate

function call, exactly one node is marked; when no node is available for compensation for

a given rank R, the high level algorithm moves on to a lower rank. Thus, in worst case,

for every Rank R, NR+1 nodes are marked.

Lemma 2: For each node j chosen in Line 4 of algorithm 16, compensation procedure

has a worst case runtime of O(N).

Proof: Clearly, for each node j, the constructed children set is bounded by the node

degree ∆. Finding a suitable node to satisfy the condition of line 7 in algorithm 16, can

be done in O(∆ log ∆) time. To do this, one may just construct V in O(∆) time, and sort

this set in order of subtree size. To find a suitable candidate from a sorted set can also

be done in O(∆) time. Hence, finding n has a worst case runtime of O(∆ log ∆). In case

a suitable child is found, inserting the current and new parent at new positions can take

upto O(NR) time. Hence, for a given node j, this compensation process may take up to

O(NR + ∆ log ∆) = O(N) time, since N > NR and it is safe to assume N ≥ ∆ log ∆.

Consider that, if a node j does not have a candidate child to be compensated with,

that node is not visited again for the given rank R, as we advance the current position

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 157

in line 5 in algorithm 16. Combining this fact with the above lemmas, we find the total

runtime complexity of the proposed method to be,

T =
∑

1≤R≤H
NR+1 ·O(N) = O(N) ·

∑
1≤R≤H

NR+1 = O(N2)

7.5 Evaluation

This work simulates RPL in OMNeT++ discrete event simulator engine, using Castalia-

2.2 WSN framework. However, LLNs posses highly time dependent attributes, a fixed

probabilistic packet delivery or link condition does not represent typical challenges in an

urban network. Hence, to make the results more realistic, the authors gather topology and

link quality data with respect to time from real outdoor deployments to build a database,

and use these information instead of simple probabilistic Packet Delivery Ratio (PDR).

Each link in the simulated work behaves in the exact same way as a real link fluctuates

in the real life deployment. All the nodes simulate TelosB motes with CC2420 radio with

a data rate of 250 Kbps, and a Tx current of 17.4 mA operated by 2 AA batteries, along

with 802.15.4 MAC/PHY specifications.

7.5.1 Simulation results

In Figure 7.4, we plot the calculated imbalance as per equation 7.2, for networks of different

size. We generate routing tables by implementing RPL. With proposed load balancing al-

gorithms, total imbalance is observed to be much less, and the difference is more prominent

for larger networks. Clearly, larger the size of the network is, more option the algorithm

has to balance the load in the the network. Since load balancing is most required at the top

level of aggregation where the nodes carry most amount of traffic. Hence in Figure 7.5,

we show the variance in energy expense for the nodes at the top level of the network,

directly connected to the aggregation point. This outcome shows similar property as Fig-

ure 7.4, providing the insight that proposed imbalance metric in equation 7.2 gives more

importance to the top level.

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 158

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

12000

Network Size

C
a
lc

u
la

te
d
 I
m

b
a
la

n
c
e

RPL

RPL+Load Balancing

Figure 7.4: Imbalance metric (I) vs Network size.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

9

Network Size

T
o

p
 L

e
v
e

l
Im

b
a

la
n

c
e

 i
n

 E
n

e
rg

y
 E

x
p

e
n

s
e

 (
in

 µ
J

2
/H

)

RPL

RPL+Load Balancing

Figure 7.5: Top level variance in energy expense.

In accordance with Equation 7.2, the top level energy expense variance is calculated

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 159

as follows:

IER=2 =
1

|NR=2|
∑

i∈NR=2

(Ei − ER=2)
2 (7.4)

, where similar to Si and SR, Ei and ER=1 refer to energy spent by node i and

average energy expense of all nodes at rank R = 1 respectively. Figure 7.6 shows how

the energy expense is distributed among nodes for a network of size 2000. By providing

proposed load balancing approach, this heuristic increases number of nodes that consume

less energy, and decrease the number of nodes that consume maximum energy. As it can

be observed, the maximum energy consumption by any node drops from 3.5×105µJ/hour

to 9.5× 104µJ/hour.

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

70

80

90

100

Energy Expense (in µJ per hour)

C
D

F
 o

f
n
o
d
e
s
 i
n
 %

a
g
e

RPL − 2000 Nodes

RPL+LB − 2000 Nodes

Figure 7.6: CDF of energy expense vs % of nodes.

It is unarguable, that the most desired and prominent effect of load balancing should

be to increase the lifetime of a network. By decreasing the maximum energy expense, one

can hope to keep the network alive for more time. For our evaluation, lifetime is defined

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 160

to be the time when the first node depletes its battery. Since this node is most expected to

be a node at the top level, this incident may lead to unreachability of a number of nodes

in the network. In Figure 7.7, the average lifetime of different size networks for RPL with

and without the proposed load balancing approach is plotted. Clearly, the improvement is

significant. The lifetime improvement factor, defined as the ratio of network lifetime with

load balancing approach and without it. As one can observe in Figure 7.8, the improvement

factor increases with the network size. Proposed algorithm provides only an average of

10% of network lifetime improvement in a network of 100 nodes, as the opportunity of

load balancing in such a small network is limited and unnecessary. However, for a network

of size 2500, we can achieve a mean improvement of over 160%.

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Network Size

L
if
e
ti
m

e
 o

f
th

e
 n

e
tw

o
rk

 (
X

 1
0

6
 h

o
u
rs

)

RPL

RPL+Load Balancing

Figure 7.7: Network Lifetime vs Network size.

Since what has been developed in this work is essentially a heuristic working in a

greedy fashion, we also turn our attention towards finding out how effective the proposed

method is against the best solution. Being an NP-hard problem, The best solution is

no way achievable for a network of sizes considered in this study other than solving the

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 161

0 500 1000 1500 2000 2500
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Network Size (in Nodes)

L
if
e

ti
m

e
 I

m
p

ro
v
e

m
e

n
t

F
a

c
to

r
(R

P
L

+
L

B
 /

 R
P

L
)

Figure 7.8: Improvement fator by load balancing vs Network size.

maximization problem given in constraint refered by Equation 7.3 seperately. Instead,

we generate 25 instances of random topologies of 20, 25, 30 and 35 nodes, and run the

proposed heuristic along with Brute Force mechanism that finds the optimum solution

that minimizes the imbalance objective function listed in Equation 7.3. The Brute force

is needed to find the aggregation tree structure with absolute minimum imbalance, . In

Figure 7.9, we compare average imbalance factor for default RPL, proposed Load balancing

heuristic and the maximally balanced tree for each instance of topology generated. Also,

In Figure 7.10, we plot the imbalance factor at the top level (Rank = 2), based on number

of packets handled. The Top level imbalance on packet forwarding is calculated based on

Equations 7.2 and 7.4, and is shown in the following equation 7.5.

ISR=2 =
1

|NR=2|
∑

i∈NR=2

(Si − SR=2)
2 (7.5)

However, even for small networks, implementing a brute force mechanism will be ex-

ponentially time consuming. For an example, In a network with 35 nodes, if each node

has only 3 candidate parents to chose from, the brute force search mechanism needs to

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 162

20 25 30 35
0

5

10

15

20

25

30

35

40

Network Size

C
a

lc
u

la
te

d
 I

m
b

a
la

n
c
e

RPL

RPL+Load Balancing

Brute Force

Figure 7.9: Imbalance Factor for Default RPL, Proposed Heuristic, and Maximally Balanced
DAG.

20 25 30
0

5

10

15

20

25

Network Size

T
o

p
 L

e
v
e

l
Im

b
a

la
n

c
e

 i
n

 P
a

c
k
e

t
T

ra
n

s
m

is
s
io

n

RPL

RPL+Load Balancing

Brute Force

Figure 7.10: Top level Variance in Packet Transmission for Default RPL, Proposed Heuristic,
and Maximally Balanced DAG.

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 163

generate and evaluate 334 (∼ O(1016)) possible instances of tree. On the other hand,

the proposed heuristic should be extremely efficient with O(N2) operations, N being the

number of nodes in the network. For the computational purpose, the average time taken

to complete the ‘Compensate’ algorithm is calculated for topologies of 200 – 2500 nodes,

and is plotted in Figure 7.11. We can observe, even in a large topology of 2500 nodes, the

heuristic takes less than 4 seconds to complete. All these tests have been performed on a

computer with 6 GB RAM and 2.4 GHz Intel processor.

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

Network Size

T
im

e
 t
a
k
e
n
 t
o
 r

u
n
 C

o
m

p
e
n
s
a
te

 (
in

 m
s
)

Figure 7.11: Time to run compensate algorithm.

7.6 Summary

This Chapter shows how existing load balancing techniques cannot satisfy the needs of

large scale LLNs. A metric to calculate load imbalance in any data aggregation tree is

hereby proposed, minimizing which would yield least variation in data traffic handled as

well as in energy consumption by the same level nodes. This work shows that minimizing

any such imbalance function of a network, given a partial topology knowledge, is a NP-

7. EVOLUTION OF RPL: TOWARDS LOAD BALANCED LLNS 164

hard problem. Thus a greedy heuristic is proposed, which runs in O(N2) time to minimize

imbalance at every level and thus the overall imbalance in the network. The simulation

results show that the proposed approach indeed achieves less variance in handled data

traffic, low imbalance and help improve the network lifetime by considerable amount.

This work shows that with a very partial knowledge of the topology, such as at most

3 parents, notable improvement in energy expense and load balancing can be achieved.

Other optimization methods, such as genetic algorithms can be applied to achieve the best

parent assignment over time.

8

Future Work - RPL Adaptation in

IoT via HIPC

So far, we have only developed an appropriate routing protocol for LLNs. However, adap-

tation to the Internet of Things is a much bigger task than simple routing, control overhead

scaling and congestion control. IoT is not going to be limited within a single deployment

scenario, or rather neither will be controlled by single vendor or implementation policy.

Objective function (OF) to build a DAG or to route data is envisioned to depend on

several policies. Different users may have different Service Level Agreements (SLA) or

Quality of Service (QoS) requirements. It is indeed required that while routing the data,

each policy and requirement should be enforced. However, the individual routing elements

within the LLN, or the smart objects does not often have the processing power for policy

details, performing traffic engineering or even simple tasks such as load balancing. Hence

clearly, some centralized decision making is needed. Clearly different from Wireless Sen-

sor Networks (WSN), an LLN can not avoid centralized routing techniques, as the objects

need to be globally accessed.

It should be noted RPL non-storing mode forces the border router (LBR) to insert

a source routing heading into the packets to route a data. However, the source routing

header is constructed based on the parent node provided by each routing element in the

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 166

LLN. With this approach, RPL alone can not support different traffic requirements. Also,

fully centralized approach is not possible due to several reasons. Firstly, gathering all link

states are not possible since control overhead has to be kept at a minimum. Secondly, due

to varying link quality, the updates will be frequent, and consume scarce bandwidth and

energy resources.

8.1 Function of Proposed Architecture

In this chapter, we propose Hybrid Intelligent Path Computation (HIPC), which is a

routing architecture based on RPL (preferably non-storing mode), but is capable to extend

the services of this routing protocol so that policy enforcement, traffic engineering, etc.,

are possible. By decoupling policy control from objective function, we require the smart

objects in IoT to use their processing power less often. We also aim to provide an example

based on a functionality offered (load balancing) how this architecture can be used.

As we can observe in Figure 8.1, an Autonomous System (AS) can have multiple LLN

border routers, along with other border routers and interior gateways. An autonomous

system that encompasses both kinds of borders is most likely to belong to a single vendor

or a single entity, such as a University or apartment complex. For an apartment complex,

the individual LBRs may connect to different building automation systems. For a utility

provider, an LBR can be installed in a local substation, that connects to individual meters

(AMI or gas meters) in the locality, forming a border gateway for an urban LLN. The

autonomous system in this case may be the proprietary intra-network of the utility provider

company. However, the same meters and individual components also needs to be accessed

through standard IP network, for which the traffic arrives from external autonomous

systems, which can belong to same vendor, or a different vendor agreeing to common

set of terms and policy. Clearly, priority of traffic and provided bandwidth to access

individual devices or sensors inside the LLN would differ from traffic to traffic, and thus

also from application to application. For example, a security application within the same

autonomous would have more priority than a polling application traffic originating outside

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 167

the AS, while the later can only be routed through mains power operated nodes within

the LLN. Thus, within the LLN, a node may need to chose different parent in the DAG

based on the application.

LBR

LBR

Autonomous

System

Router and/or

Border Gateways

Figure 8.1: LLNs Connected to an AS.

HTTP

Application Layer Protocols

CoAP

TCP

Transport Layer Protocols

UDP

Network Layer Protocols

IPv6

Routing Engine

RPL MPL

6LowPAN

Adaptation Layer Standards

6LowPAN over

Bluetooth LE

IEEE 802.15.4

PHY / MAC Layer Standards

Bluetooth LE
IEEE 802.15.4e

TSCH

6TOP

Low Power Listening (LPL) module

HIPC

Figure 8.2: HIPC in a complete Protocol
stack for LLN Devices

However, delegating the responsibility of determining different routes for different ap-

plications to the individual smart objects or sensors within the LLN can be quite bur-

densome to the already low resourceful nodes. At the same time, as we pointed out in

Section 7.1, distributed optimization approaches for load balancing are not viable either.

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 168

Hybrid Intelligent Path Computation (HIPC) is designed to be included in layer 3, along

with the core RPL mechanism, as shown in Figure 8.2. While the core RPL will be re-

sponsible for generating and processing control packets such as DIO, DAO etc., handling

different timers including trickle timer for DIO generation, and forwarding the data packet

to the next hop, HIPC will determine the suitable parent for corresponding traffic, esti-

mate average traffic, provide policy control and service level agreement, implement load

balancing, etc. The RPL core with provide the HIPC block with the set of parents which

are either obtained by receiving DIO messages (for nodes other than LBR) or via receiving

DAO advertisements by the LBR from in-LLN nodes. The HIPC will provide the RPL

core with processed forwarder list, based on either flow label or application ID.

8.2 Detailed HIPC Architecture

HIPC architecture will consists different types of processing modules, which will be in-

teracting among themselves. These processing modules can be broadly classified to two

different classes based on their location in the network and functionality. Modules that

form HIPC component in the routing elements of smart objects inside the LLN are termed

as Distributed Processor Modules (DPM), as they process information related to a single

node. The second type of modules are termed Centralized Processor Modules (CPM),

which are active in the border routers, and normally acquire a high level view of the net-

work. Distributed Processor Modules (DPM) are responsible to interact with RPL core

mechanisms and lower levels to gather information on best possible parents for the node.

On the other hand, CPMs are responsible for analyzing information forwarded by indi-

viduals nodes from within the LLN along with Policy rules, service level agreements, QoS

requirements etc. CPMs thus provide the RPL core of a border router with an appropriate

parent selection for each node, which is forwarded to the nodes via piggy-backing some

acknowledgement, preferably DAO-ACKs.

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 169

8.2.1 Distributed Processor Modules (DPM)

Each node in the LLN, instead of assigning a single parent in the advertised destination

advertisements (DAO), includes a confident set of parents / forwarders. This is to ensure

that the CPMs in LBR may have more than one choices to to forward the data to any node

without gathering the full network topology. Specifically, gathering a confident forwarder

set from individual nodes are more effective for a dynamic environment such as an LLN

than gathering the whole neighbor set. The LBR may and should not have knowledge

about the link quality of each node with each of its neighbor, as gathering such huge

and temporally unstable information would assume large control traffic volume enough to

halt normal network operations. If each node provides the LBR with options that can be

confidently used, the routing topology would tend to be much more stable.

DPM - PS

DPM - RT

DPM - CPP

DPM - LLSP

RPL Core

Figure 8.3: Distributed Processor Modules in HIPC.

DPM-PS : As shown in Figure 8.3, these modules interact with RPL core via the

DPM - Parent Selection (DPM-PS) module, as for routing in non-storing module the

only routing database a node needs to have is its preferred parent. Downward routing,

when performed by insertion of source routing header can bypass the RPL core and can

be achieved through IPv6 (or µIPv6) module itself. In this case, the DPM-PS module

perform the functions listed below:

• It interacts with the RPL control packets transmitted and received to create a con-

fident parent set. In order to achieve this, DPM-PS module need to communicate

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 170

with Control Packet Processing Module (DPM-CPP). It receives DIO packets to

build a potential parent and sibling set, and returns a set with parents with more

confidence to include in the destination advertisement (DAO) packets.

• The module interacts with the Lower Level Signal Processing (DPM -LLSP) module

to gather lower level information to determine confidence on its neighbors. DPM-

PS sends a set of potential parents to the DPM-LLSP modules, and based on the

returned information, it uses a filtering function to sort the set or eliminate weak

candidates.

• The module, also receives acknowledgements of destination advertisement (DAO-

ACK) packets sent from the LBR via the RPL-core, and forwards back to the Routing

Table module (DPM-RT).

DPM-LLSP : The Lower Level Signal Processing (DPM -LLSP) module is responsi-

ble to interact with the MAC layer, where it gathers statistics on each transmission and

retransmission attempt made. It also receives a candidate forwarder set from the parent

selection (DPM-PS) module. For each node in the candidate set, this module maintains

a moving average of data transmission success rate, thus creating a database of Expected

Transmission Count (ETX) metric for the candidate set. Once a node falls under a min-

imum configurable ETX threshold from the communicating node, DPM-LLSP blacklists

the node. This module may also gather information from the IPv6 (or µIPv6) module,

and can also be benefited from it’s Neighbor Discovery (ND) or Neighbor Unreachability

Detection (NUD) techniques, described in RFC 4861 (82). It returns the DPM-PS module

with a filtered or sorted set of parent / neighbor nodes for routing decisions.

DPM-CPP : The Control Packet Processing Module (DPM-CPP) is responsible for

receiving control packets (DIO, DAO, DAO-ACK) from the RPL core via the parent selec-

tion (DPM-PS) module, parsing the information. It also sends destination advertisements

(DAO) to the most preferred parent node via the RPL core. At the same time, it may

also receive parameters to emit different control packets. For example, in Section 5.5,

a combined approach of determining the value of DelayDAO parameters was proposed.

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 171

It can be easily implemented using the HIPC architecture. The DPM-CPP module can

calculate the round trip time, since it sends out the DAO packets, and receives the DAO-

ACK packets. The DAO-ACks also contain ‘Base’ and ‘K’ parameters as pointed out in

Algorithm 10, Section 5.5, which in conjunction with the round trip time, fine tune the

parameters needed for DAO emission.

8.2.2 Centralized Processor Modules (CPM)

Centralized Processor Modules (CPM) in the LBR would be responsible for tasks such

as handling DAO packets, maintaining a topology of the whole DAG as viewed from the

LBR, removing parents from the assigned parent set by individual nodes based on pol-

icy etc. Similar to the DPM, these centralized modules communicate with the RPL core

implementation via a topology Management (CPM-TM) module. The RPL core is respon-

sible for receiving Data and control packets, Managing trickle timers, sequence numbers,

emitting DIO packets etc. The RPL core also receives a preferred topology or calculated

parent set, and creates source routing header for routing data packets. The HIPC mod-

ules are provided control packets from the RPL core, and policies, application profiles

and traffic requirements from the provider. An instance of such an HIPC architecture

implementation is shown in Figure 8.4.

CPM - TM

CPM -TE

CPM - SLA CPM - PE

CPM-DAO

RPL Core

CPM - TC

Figure 8.4: Centralized Processor Modules in HIPC.

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 172

CPM-TM : The Topology Management (CPM-TM) module is responsible for inter-

acting with the RPL core, receiving control packets such as DAO, and providing with

control packets such as DAO-ACK. It is also responsible for creating a preferred topology,

given policy information, service level agreement, and preferred traffic engineering rule,

such as load balancing or lifetime maximization. It also interacts with other centralized

processor modules to perform the following actions.

• It receives a preliminary parent set from Destination Advertisements Module (CPM-

DAO) as formed by DAO packets received from the in-LLN nodes and provides the

module with a selected parent, so that the CPM-DAO module can issue a DAO-ACK

to the DAO issuing node.

• It provides the Policy Enforcement Module (CPM-PE) with the received parent set,

and receives a filtered set of parents.

• It provides the Service Level Agreement Module (CPM-SLA) with the filtered parent

set received from the CPM-PE module (if any), or with the preliminary parent set

received from the CPM-DAO module, and receives another filtered parent set from

CPM-SLA.

• It provides Traffic Engineering Module (CPM-TE) with the filtered parent set re-

ceived from the CPM-SLA module (if any), or from the CPM-PE module if CPM-

SLA is not implemented, or with the preliminary parent set received from the CPM-

DAO module. From CPM-TE, this module receives a calculated parent set (one for

each node), which is forwarded to the CPM-DAO module.

CPM-DAO : It receives Destination Advertisements (DAO) packets via the CPM-

TM module as received by the RPL core, creates a preliminary parent set for each in-LLN

nodes, which consists of all the candidate parents as chosen by the nodes. This module

may or may not use filtering on the received parent set before passing it on to the CPM-

TM module. Also, it receives a calculated parent set, which contains one parent per

node, or one parent per flow label, per node, and creates DAO-ACK packets for the

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 173

node accordingly. At the same time, this module can determine parameters needed for

DelayDAO timer triggering, as pointed out in Section 5.5. The CPM-DAO module, in

this case, can receive a topology view from the CPM-TM module, and return the values

of ‘K’ and ‘Base’ parameters to include in the DAO-ACK packets or for the RPL core to

use. Precisely, Algorithms 8 and 9 will be run in this module.

CPM-PE : The centralized Policy Enforcement Module (CPM-PE) is responsible to

filter a received parent set from the CPM-TM module according to policy rules enforced

for a particular LLN on basis of application and / or traffic origin. Normally, operator

policies, such as avoiding nodes with certain conditions or preferring nodes certain features

while routing can create a filtering criteria. At the same time, Avoiding certain nodes while

routing data from a particular origin (vendor) or belonging to a particular flow, can create

a filtered parent set with two key index, node and flow label. This would further facilitate

label based routing within future LLNs. This module returns the filtered parent set to the

CPM-TM module.

CPM-SLA : Centralized Service Level Agreement module (CPM-SLA) will further

filter a parent set received from the CPM-TM module, based on traffic differentiation

either on the base of origin or based on flow label. Hence, it also create a filtered parent

set with two key index, node and flow label and returns it to the CPM-TM module.

CPM-TC : For Traffic engineering, it may be required to know the traffic present in

the network. In case of normal traffic pattern being unknown or no pre-determination of

traffic passed through the border router, the Traffic Calculator Module (CPM-TC) creates

a traffic estimate, and returns the same to the Traffic Engineering Module (CPM-TE).

As an example, the following Algorithm 17 can be applied each time the border router is

presented with a traffic either originated from its LLN, or destined to an object within the

LLN. In the algorithm below, TSample
j,k denotes the traffic volume originated or destined

to node j within the current time frame for Application ID k or Flow Label k, whichever

applicable. The matrix TAvg, is exponential moving estimate of traffic, where TAvg
j,k stands

for the average traffic originated or destined to node j for Application ID k or Flow Label

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 174

k, over time. The TAvg is returned to the CPM-TE module. This algorithm creates

nothing but a moving average estimate of the traffic, and it is on the implementor to

design an algorithm for traffic estimation suitable to the LLN in context.

Algorithm 17 Example of Traffic Calculation in CPM-TC Module

1: N = Number of LLN nodes, K = Number of distinguished Application ID / Flow
Label

2: Initiate Traffic Matrix TAvg, of dimension N ×K
3: Capture each traffic, extracts application ID / Flow Label ‘k ∈ K’, source and desti-

nation of the traffic

4: for Each node j ∈ N do

5: if (Source == j) OR (Destination == j) then

6: TAvg
j,k = β × TAvg

j,k + (1− β)× TSample
j,k

7: end if

8: end for

CPM-TE : CPM - Traffic Engineering Moderator would run heuristics to chose the

most preferred forwarder from the resultant parent set received from the CPM-TM module

so that certain requirements can be fulfilled. This module also may also interact with the

Traffic Calculator Module (CPM-TC), as pointed out in the previous bullet. Input to this

module is mainly two-fold, a filtered candidate parent set received from CPM-TM module,

and a traffic matrix from CPM-TC module, which states traffic volume originated from

or destined to from each node, for each flow label, if label based routing is present. Once

it receives such a traffic detail, it can run further heuristics to determine the final parent

set based on traffic engineering needs. For example, Algorithms 15 and 16, can be run in

CPM-TE to provide a parent set to maximize the network lifetime. On each occasion of

global repair (by releasing new DAG Sequence Number), or significant change in average

traffic (TAvg) matrix, or a parent failure, these algorithms can be rerun to generate new

parent set.

8. FUTURE WORK - RPL ADAPTATION IN IOT VIA HIPC 175

8.3 Summary

This Chapter provides a brief introduction to the proposed HIPC architecture, and high-

lights the key procedures. This architecture mainly aims at reducing the processing burden

from smart objects with low resources, yet is capable of delivering current Autonomous

Systems features of policy control, traffic engineering, etc. to thge context of LLNs. This

architecture, thus extends the capability of emerging Internet of Things to be seamlessly

assimilated into current world IP architecture. The future prospect of this small idea can

be immense, As there is currently no standard on how a border router (LBR) can be

implemented as a gateway to the LLNs, and most certainly there is no such architecture

yet to provide Autonomous Systems (AS) capabilities into an LLN.

9

Conclusion and Future Directions

This chapter summarizes the goals achieved in this thesis, and how future systems can be

built upon what we have today.

9.1 Summary of This Thesis

We have achieved the following in previous years while working on RPL and routing in

LLN in general:

• We have designed a WSN simulator, which can take network link traces as input,

generate topologies identical to real deployment or random ones, and vary the link

quality in similar ways to a real deployment.

• We have implemented RPL for different networks and validated that local repair

mechanism with poisoning sub-DAG indeed keep connectionless time to a low value,

so nodes always have a path to reach the LBR. The performance evaluation studies

of RPL has been published in (17, 18).

• We have performed exhaustive comparative study between RPL and LOADng, and

researched whether proactive protocol or reactive protocols are better suited for

LLN needs. We have also shown that for large networks, buffer space consumed and

memory requirement for RPL tends to increase. Hence with default configuration in

9. CONCLUSION AND FUTURE DIRECTIONS 177

proposed standard, RPL will not behave optimally. This work has been submitted

for consideration in Elsevier’s Ad Hoc Networks Journal. A short version of the

paper appeared in (83).

• Two mechanisms are proposed to resolve the congestion and high memory and buffer

requirements in the standard RPL non-storing mode implementation, which makes

use of a fixed, universal DelayDAO Timer. We have observed that both proposed

mechanisms provide fairly low RAM usage, especially in large topologies. These

algorithms also incur less delay for data packet delivery by controlling the control

plane congestion. These findings have been published in (64).

• A Combination of Distributed and Centralized mechanisms to schedule Destination

Advertisements (DAO) is proposed to retain the benefits of both approaches in

Chapter 5, and has been evaluated.

• A DAO generation and aggregation mechanism is proposed for RPL storing mode,

which is observed to provide the DAG root with faster congregation of addresses in

the network, less control overhead and faster delivery of data packets, by lowering

DAO congestion.

• We show how existing load balancing techniques cannot satisfy the needs of large

scale LLNs, and have demonstrated how load balancing can be implemented through

proposed HIPC architecture. We have implemented a greedy heuristic for creating a

balanced tree from a Directed Acyclic Graph (DAG). Thus, forming the base of load

balancing in LLNs. Some preliminary results of this work have appeared in (84).

• We have drafted the HIPC architecture for routing over LLNs, so that future needs

such as policy enforcement, traffic engineering, quality of service, etc., can be han-

dled. We have shown how traffic estimation, load balancing, policy enforcement, etc.

can be achieved through this architecture, without burdening the smart objects hav-

ing low resources, thus paving the way for LLNs to be compatible with the broader

Internet of Things (IoT).

9. CONCLUSION AND FUTURE DIRECTIONS 178

9.2 Future Work Items

The future prospects of the work in this thesis are immense. Routing in Low-Power Lossy

Networks (LLNs), smart grid etc., is a nascent area, where we have many stones yet to

be turned. The proposed HIPC architecture provides a stepping stone towards practical

implementation of LLNs and augmentation with existing IP world, so that sensor networks

can implement service differentiation for end users, which was hard to foresee even a decade

back. This thesis can be extended to achieve the following in near future:

• Developing the HIPC architecture, and detailing how QoS, Traffic Engineering, etc.,

can be achieved via this architecture.

• It should be interesting to investigate how the number of reported parents effect

the achievable load balancing. It is our intuition, that as we increase maximum

number of parents reported by a node, better load balancing and network lifetime

would be achieved. It is also possible to extend this work with the help of online

genetic algorithm, so that a change in network topology or parent set does not

trigger recomputing the whole routing matrix, but the network gradually approaches

towards its optimum performance.

• Implementation of HIPC architecture along with core RPL functionalities in TinyOS

or Contiki OS with MicaZ motes, and verification of proper and intended operation in

real deployments along with performance results, thus probably creating a prototype

of HIPC enabled network.

• Finally, it is possible to extend Software Defined Networking (SDN) concept to

the Low Power Lossy networks as well, by adopting and fine tuning the proposed

HIPC structure. The DPM-RT module proposed in Section 8.2.1, can be used where

flow tables can be installed. Also, source routing as performed by the non-storing

mode, fits right into the software defined networking concept of decoupling the data

plane and control plane from each other. The CPM-TM module as described in

Section 8.2.2 can be used as the controller, which has the (partially) full view of the

9. CONCLUSION AND FUTURE DIRECTIONS 179

topology, and performs all routing decisions based on the parent sets and policies

enforced. This would, in future open the gateway for easy SDN extension from where

it is today.

9.3 Summary of Publications

1. J. Tripathi, J. C. de Oliveira, and JP Vasseur, “Proactive versus Reactive Routing

in Low Power and Lossy Networks: Performance Analysis and Scalability Improve-

ments”, Accepted for publication in Elseviers Journal Ad Hoc Networks.

2. J. Tripathi, J. C. de Oliveira, C. Chauvenet, and JP Vasseur, “Why Reactive Proto-

cols are Ill-Suited for LLNs, draft-tripathi-roll-reactive-applicability-02”, IETF draft,

Jan. 2014. http://tools.ietf.org/html/draft-tripathi-roll-reactive-applicability-02

3. J. Tripathi and J. C. de Oliveira, “Quantifying Load Imbalance: A Practical Im-

plementation for Data Collection in Low Power Lossy Networks,” in the Proceedings

of the 47th Annual Conference on Information Sciences and Systems (CISS 2010),

Baltimore, Maryland, March 2013.

4. J. Tripathi and J. C. de Oliveira, “Proactive versus Reactive Revisited: IPv6

Routing for Low Power Lossy Networks,” in the Proceedings of the 47th Annual

Conference on Information Sciences and Systems (CISS 2010), Baltimore, Maryland,

March 2013.

5. J. Tripathi and J. C. de Oliveira, “On Adaptive Timers for Improved RPL Op-

eration in Low-Power and Lossy Sensor Networks,” in the Proceedings of the 5th

International Conference on COMmunication Systems and NETworkS (COMSNETS

2013), Bangalore, India, Jan. 2013.

6. J. Tripathi, J. C. de Oliveira, and JP Vasseur, “IETF RFC 6687, Performance

Evaluation of the Routing Protocol for Low-Power and Lossy Networks (RPL)”,

October 2012. http://tools.ietf.org/html/rfc6687

9. CONCLUSION AND FUTURE DIRECTIONS 180

7. J. Tripathi, J. C. de Oliveira, and JP Vasseur, “Applicability Study of RPL with

Local Repair in Smart Grid Substation Networks,” in the Proceedings of the 1st

IEEE International Conference on Smart Grid Communication (IEEE SmartGrid-

Comm 2010), Gaithersburg, Maryland, Oct. 2010.

8. J. Tripathi, J. C. de Oliveira, and JP Vasseur, “A Performance Evaluation Study

of RPL: Routing Protocol for Low Power and Lossy Networks,” in the Proceedings

of the 44th Annual Conference on Information Sciences and Systems (CISS 2010),

Princeton, New Jersey, March 2010.

References

[1] Dave Evans. The Internet of Things - How the Next Evolution of the Internet Is
Changing Everything, April 2011. 1

[2] The EPCglobal Architecture Framework. 2

[3] Internet of Things in 2020 - Roadmap for the Future, May 2008. 3

[4] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A
Survey. Computer Networks, 54(15):2787–2805, Oct 2010. 3

[5] A. Brandt, J. Buron, and G. Porcu. Home Automation Routing Requirements
in Low Power and Lossy Networks. RFC 5826, April 2010. 3, 4, 8, 33, 70, 99, 100

[6] K. Pister, P. Thubert, S. Dwars, and T. Phinney. Industrial Routing Require-
ments in Low-Power and Lossy Networks. RFC 5673, October 2009. 3, 4, 8, 11, 33, 34,
70, 90, 99, 100

[7] M. Dohler, T. Watteyne, T. Winter, and D. Barthel. Routing Requirements for
Urban Low-Power and Lossy Networks. RFC 5548, May 2009. 3, 4, 8, 34, 70, 82, 83,
99, 100

[8] J. Moy. OSPF Version 2. RFC 2328, April 1998. 3

[9] T. Clausen and P. Jacquet. The Optimized Link State Routing Protocol (OLSR).
RFC 3626, October 2003. 3

[10] T. Clausen, C. Dearlove, P. Jacquet, and U. Herberg. The Optimized Link State
Routing Protocol version 2. DRAFT, October 2012. 3

[11] P. Levis, A. Tavakoli, and S. Dawson-Haggerty. Overview of Existing Routing
Protocols for Low Power and Lossy Networks. DRAFT, April 2009. 3

[12] R Albrightson, JJ Garcia-Luna-Aceves, and Joanne Boyle. EIGRP-a fast rout-
ing protocol based on distance vectors. In Proc. Networld/Interop, 94, pages 136–147,
May 1994. 3

[13] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561, July 2003. 3

[14] IETF Routing Over Low-Power Lossy Networks Working Group. 3, 68

[15] T. Winter et al. RPL: Routing Protocol for Low Power and Lossy Networks.
RFC 6550, March 2012. 4, 17, 22, 25, 26, 27, 28, 113, 116, 122, 129, 139

https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.gs1.org/gsmp/kc/epcglobal/architecture
http://www.caba.org/resources/Documents/IS-2008-93.pdf
http://tools.ietf.org/html/rfc5826
http://tools.ietf.org/html/rfc5826
http://tools.ietf.org/html/rfc5673
http://tools.ietf.org/html/rfc5673
http://tools.ietf.org/html/rfc5548
http://tools.ietf.org/html/rfc5548
http://tools.ietf.org/html/rfc2328
http://tools.ietf.org/html/rfc3626
http://tools.ietf.org/html/draft-ietf-manet-olsrv2-17
http://tools.ietf.org/html/draft-ietf-manet-olsrv2-17
http://tools.ietf.org/html/draft-ietf-roll-protocols-survey-07
http://tools.ietf.org/html/draft-ietf-roll-protocols-survey-07
http://tools.ietf.org/html/rfc3561
http://tools.ietf.org/html/rfc3561
http://tools.ietf.org/wg/roll
http://tools.ietf.org/html/rfc6550

REFERENCES 182

[16] J. Martocci, P. De Mil, N. Riou, and W. Vermeylen. Building Automation Rout-
ing Requirements in Low-Power and Lossy Networks. RFC 5867, June 2010. 4, 8, 14,
33, 70

[17] J. Tripathi, J.C. de Oliveira, and J.P. Vasseur. Applicability Study of RPL with
Local Repair in Smart Grid Substation Networks. In Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on, October 2010. 4, 120, 176

[18] J. Tripathi, J. de Oliveira, and J.P. Vasseur. Performance Evaluation of the
Routing Protocol for Low-Power and Lossy Networks (RPL), RFC 6687. RFC
6687, October 2012. 4, 23, 67, 79, 80, 120, 176

[19] N. Accettura, L.A. Grieco, G. Boggia, and P. Camarda. Performance analysis of
the RPL Routing Protocol. In Mechatronics (ICM), 2011 IEEE International Conference
on, pages 767–772, April 2011. 4, 63, 80

[20] Tiny OS. 4

[21] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System Architecture Directions for Networked Sensors. In
Proceedings of the Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS IX, pages 93–104, 2000. 4

[22] Jonathan Hui and David E. Culler. IP is Dead, Long Live IP for Wireless Sensor
Networks. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems,
SenSys ’08, pages 15–28. ACM, 2008. 4, 6, 7, 71

[23] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next
Century Challenges: Scalable Coordination in Sensor Networks. In Proceedings of
the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking,
MobiCom ’99, pages 263–270. ACM, 1999. 4, 5

[24] Sungmin Hong, Daeyoung Kim, Minkeun Ha, Sungho Bae, Sang Jun Park, Wooy-
oung Jung, and Jae-Eon Kim. SNAIL: an IP-based wireless sensor network ap-
proach to the internet of things. Wireless Communications, IEEE, 17(6):34–42, 2010.
5

[25] Minkeun Ha, Daeyoung Kim, Seong-Hoon Kim, and Sungmin Hong. Inter-MARIO:
A Fast and Seamless Mobility Protocol to Support Inter-Pan Handover in 6LoW-
PAN. In Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, Dec 2010.
5

[26] Wooyoung Jung, Sungmin Hong, Minkeun Ha, Young-Joo Kim, and Daeyoung
Kim. SSL-Based Lightweight Security of IP-Based Wireless Sensor Networks. In
Advanced Information Networking and Applications Workshops, 2009. WAINA ’09. Interna-
tional Conference on, pages 1112–1117, May 2009. 5

[27] J. Hui and J.P. Vasseur. Routing Architecture in Low-Power and Lossy Networks
(LLNs), draft-routing-architecture-iot-00. DRAFT, March 2011. 6, 71

[28] IETF Constrained RESTful Environments Working Group. 6

[29] Z. Shelby, K. Hartke, and C. Bormann. Constrained Application Protocol
(CoAP), draft-ietf-core-coap-18. DRAFT, June 2013. 6

http://tools.ietf.org/html/rfc5867
http://tools.ietf.org/html/rfc5867
http://tools.ietf.org/html/rfc6687
http://tools.ietf.org/html/rfc6687
http://www.tinyos.net/
https://tools.ietf.org/html/draft-routing-architecture-iot-00
https://tools.ietf.org/html/draft-routing-architecture-iot-00
http://tools.ietf.org/wg/core
http://tools.ietf.org/html/draft-ietf-core-coap-18
http://tools.ietf.org/html/draft-ietf-core-coap-18

REFERENCES 183

[30] Adam Dunkels. Full TCP/IP for 8-bit Architectures. In Proceedings of the 1st Inter-
national Conference on Mobile Systems, Applications and Services, MobiSys ’03, pages 85–98,
2003. 7

[31] A. Dunkels, J. Alonso, and T. Voigt. Making TCP/IP Viable for Wireless Sen-
sor Networks. In Proceedings of the 1st European Workshop on Wireless Sensor Networks
(EWSN), 2004, January 2004. 7

[32] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. RFC 4944, September 2007. 7

[33] Joseph Polastre, Jason Hill, and David Culler. Versatile Low Power Media
Access for Wireless Sensor Networks. In Proceedings of the 2Nd International Conference
on Embedded Networked Sensor Systems, SenSys ’04, pages 95–107, 2004. 7

[34] A. El-Hoiydi and J-D Decotignie. WiseMAC: an ultra low power MAC protocol
for the downlink of infrastructure wireless sensor networks. In Computers and Com-
munications, 2004. Proceedings. ISCC 2004. Ninth International Symposium on, 1, pages
244–251, June 2004. 7

[35] J.P. Vasseur, M. Kim, K. Pister, M. Dejean, and D. Barthel. Routing Metrics
Used for Path Calculation in Low-Power and Lossy Networks. RFC 6551, March
2012. 17, 28

[36] A. Varga. The OMNeT++ Discrete Event Simulation Systems. In European Simu-
lation Multiconference (ESM’2001), June 2001. 24, 120

[37] A. Boulis. Castalia: Revealing pitfalls in designing distributed algorithms in
WSN. In 5th international conference on Embedded networked sensor systems (SenSys’07),
2007. 24, 80

[38] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. The Trickle Algorithm. RFC
6206, March 2011. 26, 99

[39] T. Clausen et al. The LLN On-demand Ad-hoc Distance-Vector Routing
Protocol-Next Generation (LOADng). DRAFT, July 2012. 66, 67, 79

[40] Ulrich Herberg and Thomas Clausen. A comparative performance study of the
routing protocols LOAD and RPL with bi-directional traffic in low-power and
lossy networks (LLN). In Proceedings of the 8th ACM Symposium on Performance evalu-
ation of wireless ad hoc, sensor, and ubiquitous networks, PE-WASUN ’11, pages 73–80, New
York, NY, USA, 2011. ACM. 66, 67, 69

[41] D. Wang, Z. Tao, J. Zhang, and A. Abouzeid. RPL Based Routing for Advanced
Metering Infrastructure in Smart Grid. In Communications Workshops (ICC), 2010
IEEE International Conference on, May 2010. 66, 69, 70

[42] C. Petrioli, M. Nati, P. Casari, M. Zorzi, and S. Basagni. ALBA-R: Load-
Balancing Geographic Routing Around Connectivity Holes in Wireless Sensor
Networks. Parallel and Distributed Systems, IEEE Transactions on, 25(3):529–539, March
2014. 67

[43] B. Lichtensteiger, B. Bjelajac, C. Muller, and C. Wietfeld. RF Mesh Systems
for Smart Metering: System Architecture and Performance. In Smart Grid Commu-
nications (SmartGridComm), 2010 First IEEE International Conference on, pages 379–384,
Oct 2010. 67

http://www.sics.se/~{}adam/ewsn2004.pdf
http://www.sics.se/~{}adam/ewsn2004.pdf
http://tools.ietf.org/html/rfc4944
http://tools.ietf.org/html/rfc4944
http://tools.ietf.org/html/rfc6551
http://tools.ietf.org/html/rfc6551
http://tools.ietf.org/html/rfc6206
http://tools.ietf.org/html/draft-clausen-lln-loadng-05
http://tools.ietf.org/html/draft-clausen-lln-loadng-05

REFERENCES 184

[44] G. Iyer, P. Agrawal, E. Monnerie, and R.S. Cardozo. Performance analysis of
wireless mesh routing protocols for smart utility networks. In Smart Grid Commu-
nications (SmartGridComm), 2011 IEEE International Conference on, pages 114–119, 2011.
68

[45] A. Koliousis and J. Sventek. Proactive vs Reactive Routing for Wireless Sensor
Networks. Technical report, University of Glasgow, Department of Computing Science, 2007.
68, 70

[46] S. Mohseni, R. Hassan, A. Patel, and R. Razali. Comparative Review Study of
Reactive and Proactive Routing Protocols in MANETs. In Digital Ecosystems and
Technologies (DEST), 2010 4th IEEE International Conference on, pages 304–309, 2010. 68

[47] C. Mbarushimana and W. Vanderbauwhede. Comparative Study of Reactive and
Proactive Routing Protocols Performance in Mobile Ad Hoc Networks. In Advanced
Information Networking and Applications Workshops, 2007, AINAW ’07. 21st International
Conference on, 2, pages 679–684, 2007. 68, 70

[48] Kavita Pandey and Abhishek Swaroop. A Comprehensive Performance Analy-
sis of Proactive, Reactive and Hybrid MANETs Routing Protocols. International
Journal of Computer Science Issues, 8, November 2011. 68, 70

[49] S.R. Das, R. Castaneda, Jiangtao Yan, and R. Sengupta. Comparative Perfor-
mance Evaluation of Routing Protocols for Mobile, Ad hoc Networks. In Computer
Communications and Networks, 1998. Proceedings. 7th International Conference on, pages
153–161, 1998. 68, 69, 70

[50] Qing Zhao and Lang Tong. Energy Efficiency of Large-scale Wireless Networks:
Proactive versus Reactive Networking. Selected Areas in Communications, IEEE Jour-
nal on, 23(5):1100–1112, May 2005. 68

[51] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol (DSR)
for Mobile Ad Hoc Networks for IPv4. RFC 4728, February 2007. 68

[52] Charles E. Perkins and Pravin Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for mobile computers. In Proceedings of the con-
ference on Communications architectures, protocols and applications, SIGCOMM ’94, pages
234–244, New York, NY, USA, 1994. ACM. 68

[53] Z. Haas, M. Pearlman, and P. Samar. The Zone Routing Protocol (ZRP) for Ad
Hoc Networks. DRAFT, July 2002. 68

[54] V. Park and S. Corson. Temporally-Ordered Routing Algorithm (TORA) Version
1 Functional Specification. DRAFT, July 2001. 69

[55] Malisa Vucinic, Bernard Tourancheau, and Andrzej Duda. Performance Com-
parison of the RPL and LOADng Routing Protocols in a Home Automation Sce-
nario. In IEEE Wireless Communications and Networking Conference (WCNC), pages 1974–
1979, April 2013. 69, 70

[56] Alessandro Camillò, Michele Nati, Chiara Petrioli, Michele Rossi, and
Michele Zorzi. IRIS: Integrated Data Gathering and Interest Dissemination Sys-
tem for Wireless Sensor Networks. Ad Hoc Networks, 11(2):654–671, March 2013. 69

http://tools.ietf.org/html/rfc4728
http://tools.ietf.org/html/rfc4728
http://tools.ietf.org/html/draft-ietf-manet-zone-zrp-04
http://tools.ietf.org/html/draft-ietf-manet-zone-zrp-04
http://tools.ietf.org/html/draft-ietf-manet-tora-spec-04
http://tools.ietf.org/html/draft-ietf-manet-tora-spec-04

REFERENCES 185

[57] A. Camillo and C. Petrioli. Hands on IRIS: Lessons learned from implementing
a cross layer protocol stack for WSNs. In Global Communications Conference (GLOBE-
COM), 2012 IEEE, pages 157–163, Dec 2012. 69

[58] O. Gaddour, A. Koubaa, S. Chaudhry, M. Tezeghdanti, R. Chaari, and M. Abid.
Simulation and performance evaluation of DAG construction with RPL. In Com-
munications and Networking (ComNet), 2012 Third International Conference on, 2012. 80

[59] Yanjun Sun, Omer Gurewitz, Shu Du, Lei Tang, and David B. Johnson. ADB:
An Efficient Multihop Broadcast Protocol Based on Asynchronous Duty-cycling
in Wireless Sensor Networks. In Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, pages 43–56, 2009. 98

[60] Yanjun Sun, Omer Gurewitz, and David B. Johnson. RI-MAC: A Receiver-
initiated Asynchronous Duty Cycle MAC Protocol for Dynamic Traffic Loads
in Wireless Sensor Networks. In Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys ’08, 2008. 98

[61] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. X-MAC:
A Short Preamble MAC Protocol for Duty-cycled Wireless Sensor Networks.
In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems,
SenSys ’06, pages 307–320, 2006. 98

[62] C. Perkins. Dynamic MANET On-demand (AODVv2) Routing, draft-ietf-manet-
aodvv2-03. DRAFT, February 2014. 99

[63] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks. RFC 6282, September 2011. 105, 140

[64] J. Tripathi and J.C. de Oliveira. On Adaptive Timers for Improved RPL Oper-
ation in Low-Power and Lossy Sensor Networks. In Fifth International Conference on
Communication Systems and Networks (COMSNETS), January 2013. 108, 177

[65] J. Tripathi, J.C. de Oliveira, and J.P. Vasseur. A performance evaluation study
of RPL: Routing Protocol for Low power and Lossy Networks. In Information
Sciences and Systems (CISS), 2010 44th Annual Conference on, March 2010. 120

[66] IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs), September 2006. 121

[67] IEEE 802.15 WPAN Task Group 4g (TG4g)Smart Utility Networks., 2012. 140

[68] He Huang, Yun Xu, Yu e Sun, and Liusheng Huang. Cluster-based load balancing
multi-path routing protocol in wireless sensor networks. In 7th World Congress on
Intelligent Control and Automation. WCICA 2008., pages 6692 –6696, june 2008. 148

[69] Nauman Israr and Irfan Awan. Multihop clustering algorithm for load balancing
in wireless sensor networks. 2007. 148

[70] Namhoon Kim, Jongman Heo, Hyung Seok Kim, and Wook Hyun Kwon. Recon-
figuration of clusterheads for load balancing in wireless sensor networks. Computer
Communications, 31(1):153 – 159, 2008. 148

[71] Devendar Mandala, Xiaojiang Du, Fei Dai, and Chao You. Load balance and
energy efficient data gathering in wireless sensor networks. Wireless Communications
and Mobile Computing, 8(5):645–659, 2008. 148

http://tools.ietf.org/html/draft-ietf-manet-aodvv2-03
http://tools.ietf.org/html/draft-ietf-manet-aodvv2-03
http://tools.ietf.org/html/rfc6282
http://tools.ietf.org/html/rfc6282
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://standards.ieee.org/findstds/standard/802.15.4g-2012.html
http://hdl.handle.net/123456789/474
http://hdl.handle.net/123456789/474

REFERENCES 186

[72] Suat Ozdemir. Secure Load Balancing via Hierarchical Data Aggregation in Het-
erogeneous Sensor Networks. J. Inf. Sci. Eng., pages 1691–1705, 2009. 148

[73] A.D. Amis and R. Prakash. Load-balancing clusters in wireless ad hoc networks. In
Proceedings. 3rd IEEE Symposium on Application-Specific Systems and Software Engineering
Technology., pages 25 –32, 2000. 148

[74] Sem Borst, Iraj Saniee, and Phil Whiting. Distributed dynamic load balancing
in wireless networks. In Proceedings of the 20th international teletraffic conference on
Managing traffic performance in converged networks, ITC2007, pages 1024–1037. Springer-
Verlag, 2007. 148

[75] Hui Dai and R. Han. A node-centric load balancing algorithm for wireless sensor
networks. In Global Telecommunications Conference, 2003. GLOBECOM ’03. IEEE, 1,
pages 548 – 552 Vol.1, dec. 2003. 148

[76] Xin Guan, L. Guan, X. Wang, and Tomoaki Ohtsuki. A New Load Balancing
and Data Collection Algorithm for Energy Saving in Wireless Sensor Networks.
Telecommunication Systems, 45:313–322, 2010. 148

[77] S. Toumpis and S. Gitzenis. Load Balancing in Wireless Sensor Networks using
Kirchhoff’s Voltage Law. In IEEE INFOCOM 2009, pages 1656 –1664, april 2009. 148

[78] Yaling Yang, Jun Wang, and Robin Kravets. Interference-aware Load Balancing
for Multihop Wireless Networks. Technical report, 2005. 148

[79] Seema Bandyopadhyay and E.J. Coyle. An Energy Efficient Hierarchical Clus-
tering Algorithm for Wireless Sensor Networks. In INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, 3,
pages 1713 – 1723. 148

[80] O. Younis and S. Fahmy. Distributed Clustering in Ad-hoc Sensor Networks:
a Hybrid, Energy-efficient Approach. In INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies, march 2004. 148

[81] Ping Ding, JoAnne Holliday, and Aslihan Celik. Distributed Energy-Efficient
Hierarchical Clustering for Wireless Sensor Networks. In Distributed Computing in
Sensor Systems, 3560 of Lecture Notes in Computer Science, pages 322–339. Springer Berlin
Heidelberg, 2005. 148

[82] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbor Discovery for
IP version 6 (IPv6). RFC 4861, September 2007. 170

[83] J. Tripathi and J.C. De Oliveira. Proactive versus reactive revisited: IPv6 routing
for Low Power Lossy Networks. In Information Sciences and Systems (CISS), 2013 47th
Annual Conference on, 2013. 177

[84] J. Tripathi and J.C. de Oliveira. Quantifying load imbalance: A practical imple-
mentation for data collection in low power lossy networks. In Information Sciences
and Systems (CISS), 2013 47th Annual Conference on, March 2013. 177

http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2005-2526
http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2005-2526
http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc4861

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Introduction to LLNs: Low-Power Lossy Networks
	1.2 From Proprietary WSN Solutions to Standardization
	1.2.1 Using application gateways
	1.2.2 Using standard protocol suits

	1.3 Unique Routing Challenges in LLNs
	1.3.1 Urban LLN routing requirements
	1.3.2 Industrial automation routing requirements
	1.3.3 Home automation routing requirements
	1.3.4 Building automation routing requirements

	1.4 Contributions of This Thesis

	2 RPL: Routing Protocol for LLNs
	2.1 Overview of RPL
	2.1.1 RPL - Forming and maintaining the DAG
	2.1.2 RPL - Routing through the DAG

	2.2 Summary

	3 RPL: Performance Evaluation
	3.1 Methodology and Simulation Setup
	3.1.1 Common assumptions

	3.2 Performance Evaluation in Small Network
	3.2.1 Path quality
	3.2.2 Routing table size
	3.2.3 Delay bound for P2P routing
	3.2.4 Control packet overhead
	3.2.5 Loss of connectivity

	3.3 RPL in a Building Automation Routing Scenario
	3.3.1 Path quality
	3.3.2 Delay

	3.4 RPL in a Large-Scale Network
	3.4.1 Path quality
	3.4.2 Delay
	3.4.3 Control packet overhead

	3.5 Scaling Property, Parameter Configuration and Routing Stability
	3.6 Summary

	4 Proactive versus Reactive in LLNs
	4.1 LOADng: LLN On-demand Ad-hoc Distance Vector Routing Protocol - Next Generation
	4.2 Theoretical Comparison: A Balanced Aggregation/ Dissemination Tree Model
	4.3 Simulation Setup
	4.3.1 Traffic traces
	4.3.2 RPL and LOADng parameters

	4.4 Performance Results for Smart Grid Traffic
	4.4.1 Control overhead and ability to support P2MP or MP2P traffic
	4.4.2 Dependency of control overhead on application module
	4.4.3 Path quality
	4.4.4 High end-to-end delay
	4.4.5 Impact on memory requirements
	4.4.6 Qualitative comparative analysis
	4.4.6.1 Flooding issues in LLNs
	4.4.6.2 Impact of flooding in battery operated nodes
	4.4.6.3 Lack of support for routing based on node capability

	4.5 Performance Results for P2P Communication
	4.5.1 Path quality
	4.5.2 End-to-end delay
	4.5.3 Memory requirements
	4.5.4 Packet length

	4.6 Scaling Properties
	4.7 Summary

	5 RPL: Control Plane Congestion Mitigation in Non-Storing Mode
	5.1 DAO Specific Operation in RPL: Motivation for Optimization
	5.1.1 Trade-off on designing the value of DelayDAO Timer
	5.1.2 Bottleneck due to a constant value of DelayDAO Timer

	5.2 Determining DelayDAO - A Distributed Algorithm
	5.3 Determining DelayDAO - Centralized Approach
	5.4 Evaluation of the Algorithms
	5.4.1 Simulation setup and metrics
	5.4.2 Simulation results

	5.5 DelayDAO Controller - A Combined Algorithm Proposal to Improve RPL's Performance
	5.5.1 Routine followed at LBR or collection point
	5.5.2 Routine followed at nodes other than LBR
	5.5.3 Evaluation of proposed approach

	5.6 Summary

	6 RPL: DAO Propagation in Storing Mode
	6.1 DAO Aggregation and Delay Method in Storing Method
	6.1.1 Aggregated DAO packet format
	6.1.2 DAO aggregation algorithm

	6.2 RPL Storing Mode Evaluation
	6.3 Summary

	7 Evolution of RPL: Towards Load Balanced LLNs
	7.1 Related Work
	7.2 A Metric to Define Load Imbalance
	7.2.1 Example of balanced collection tree
	7.2.2 Imbalance factor

	7.3 How Hard Is It to Minimize Imbalance?
	7.4 Implementation of Load Balancing in LLNs
	7.4.1 Runtime analysis of proposed method

	7.5 Evaluation
	7.5.1 Simulation results

	7.6 Summary

	8 Future Work - RPL Adaptation in IoT via HIPC
	8.1 Function of Proposed Architecture
	8.2 Detailed HIPC Architecture
	8.2.1 Distributed Processor Modules (DPM)
	8.2.2 Centralized Processor Modules (CPM)

	8.3 Summary

	9 Conclusion and Future Directions
	9.1 Summary of This Thesis
	9.2 Future Work Items
	9.3 Summary of Publications

	References

