18 research outputs found

    Energy-efficient adaptive wireless network design

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations are necessary to achieve energy efficiency and an acceptable quality of service. The paper provides a review of ideas and techniques relevant to the design of an energy efficient adaptive wireless networ

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Characterizing Computation-Communication Overlap in Message-Passing Systems

    Full text link

    Design-space exploration of most-recent-only communication using myrinet on SGI ccNUMA architectures

    Get PDF
    technical reportSGI's current ccNUMA multiprocessor architectures offer high scalability and performance without sacrificing the ease of use of simpler SMP systems. Although these systems also provide a standard PCI expansion bus, the bridging between PCI and SGI's ccNUMA architecture invalidates the assumptions typically made by network protocol designers attempting to use Myrinet to reduce communications latencies. We explore the complications introduced by SGI's architecture in the context of designing most-recent-only communications, in which a reader requires only the most recent datum produced by a writer

    Performance Analysis and Comparison of Interrupt-Handling Schemes in Gigabit Networks

    Get PDF
    Interrupt processing can be a major bottleneck in the end-to-end performance of Gigabit networks. The performance of Gigabit network end hosts or servers can be severely degraded due to interrupt overhead caused by heavy incoming traffic. In particular, excessive latency and significant degradation in system throughput can be encountered. Also, user applications may livelock as the CPU power gets mostly consumed by interrupt handling and protocol processing. A number of interrupt handling schemes has been proposed and employed to mitigate the interrupt overhead and improve OS performance. Among the most popular interrupt handling schemes are normal interruption, polling, interrupt coalescing, and disabling and enabling of interrupts. In previous work, we presented a preliminary analytical study and models of normal interruption and interrupt coalescing. In this article, we extend our analysis and modeling to include polling and the scheme of interrupt disabling and enabling. For polling, we study both pure (or FreeBSD-style) polling and Linux NAPI polling. The performances for all these schemes are compared using both mathematical analysis and discrete-event simulation. The performance is studied in terms of three key performance indictors: throughput, system latency, and the residual CPU bandwidth available for user applications. As opposed to our previous work, we consider not only Poisson traffic, but also bursty traffic with empirical packet size distribution. Our analysis and simulation work gives insight into predicting the system performance and behavior when employing a certain interrupt handling scheme. It is concluded that no single interrupt handling scheme outperforms all other schemes under all traffic conditions. Based on obtained results, we propose and discuss a novel hybrid scheme of interrupt disabling-enabling and pure polling in order to attain peak performance under low and heavy traffic loads

    Performance Analysis and Comparison of Interrupt-Handling Schemes in Gigabit Networks

    Get PDF
    Interrupt processing can be a major bottleneck in the end-to-end performance of Gigabit networks. The performance of Gigabit network end hosts or servers can be severely degraded due to interrupt overhead caused by heavy incoming traffic. In particular, excessive latency and significant degradation in system throughput can be encountered. Also, user applications may livelock as the CPU power gets mostly consumed by interrupt handling and protocol processing. A number of interrupt handling schemes has been proposed and employed to mitigate the interrupt overhead and improve OS performance. Among the most popular interrupt handling schemes are normal interruption, polling, interrupt coalescing, and disabling and enabling of interrupts. In previous work, we presented a preliminary analytical study and models of normal interruption and interrupt coalescing. In this article, we extend our analysis and modeling to include polling and the scheme of interrupt disabling and enabling. For polling, we study both pure (or FreeBSD-style) polling and Linux NAPI polling. The performances for all these schemes are compared using both mathematical analysis and discrete-event simulation. The performance is studied in terms of three key performance indictors: throughput, system latency, and the residual CPU bandwidth available for user applications. As opposed to our previous work, we consider not only Poisson traffic, but also bursty traffic with empirical packet size distribution. Our analysis and simulation work gives insight into predicting the system performance and behavior when employing a certain interrupt handling scheme. It is concluded that no single interrupt handling scheme outperforms all other schemes under all traffic conditions. Based on obtained results, we propose and discuss a novel hybrid scheme of interrupt disabling-enabling and pure polling in order to attain peak performance under low and heavy traffic loads

    A Modular Reconfigurable Architecture for Asymmetric and Symmetric-key Cryptographic Algorithms

    Get PDF
    It is widely recognized that security issues will play a crucial role in the majority of future computer and communication systems. Cryptographic algorithms are the central tools for achieving system security. Numerous such algorithms have been devised, and many have found popularity in different domains. High throughput and low-cost implementation of these algorithms is critical for achieving both high security and high-speed processing in an increasingly digital global economy. Conventional methods for implementing ciphers are unable to provide all three crucial characteristics in a single solution: high throughput, low-cost, and cipher-agility. This thesis develops a reconfigurable architecture capable of implementing most symmetric-key as well as asymmetric-key ciphers. The reconfigurable nature of the architecture provides flexibility equivalent to software implementations, with the low-cost and throughput figures approaching ASIC implementations of these ciphers. Detailed discussions of the development of this architecture, along with the top-level design and interconnection scheme, have been provided. The individual components developed have been synthesized on a standard-cell library to provide an estimate of the area/performance characteristics of the design. Preliminary results show throughput values equivalent to FPGA based implementations for most of the tested ciphers, and approaching ASIC based implementations. Keywords: Reconfigurable Computing, Cryptography, Symmetric-Key, Asymmetric-Key, Domain-specific Reconfigurable Architecture
    corecore