3,488 research outputs found

    "So, Tell Me What Users Want, What They Really, Really Want!"

    Full text link
    Equating users' true needs and desires with behavioural measures of 'engagement' is problematic. However, good metrics of 'true preferences' are difficult to define, as cognitive biases make people's preferences change with context and exhibit inconsistencies over time. Yet, HCI research often glosses over the philosophical and theoretical depth of what it means to infer what users really want. In this paper, we present an alternative yet very real discussion of this issue, via a fictive dialogue between senior executives in a tech company aimed at helping people live the life they `really' want to live. How will the designers settle on a metric for their product to optimise

    Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making

    Full text link
    In multi-objective decision planning and learning, much attention is paid to producing optimal solution sets that contain an optimal policy for every possible user preference profile. We argue that the step that follows, i.e, determining which policy to execute by maximising the user's intrinsic utility function over this (possibly infinite) set, is under-studied. This paper aims to fill this gap. We build on previous work on Gaussian processes and pairwise comparisons for preference modelling, extend it to the multi-objective decision support scenario, and propose new ordered preference elicitation strategies based on ranking and clustering. Our main contribution is an in-depth evaluation of these strategies using computer and human-based experiments. We show that our proposed elicitation strategies outperform the currently used pairwise methods, and found that users prefer ranking most. Our experiments further show that utilising monotonicity information in GPs by using a linear prior mean at the start and virtual comparisons to the nadir and ideal points, increases performance. We demonstrate our decision support framework in a real-world study on traffic regulation, conducted with the city of Amsterdam.Comment: AAMAS 2018, Source code at https://github.com/lmzintgraf/gp_pref_elici

    Evaluating recommender systems from the user's perspective: survey of the state of the art

    Get PDF
    A recommender system is a Web technology that proactively suggests items of interest to users based on their objective behavior or explicitly stated preferences. Evaluations of recommender systems (RS) have traditionally focused on the performance of algorithms. However, many researchers have recently started investigating system effectiveness and evaluation criteria from users' perspectives. In this paper, we survey the state of the art of user experience research in RS by examining how researchers have evaluated design methods that augment RS's ability to help users find the information or product that they truly prefer, interact with ease with the system, and form trust with RS through system transparency, control and privacy preserving mechanisms finally, we examine how these system design features influence users' adoption of the technology. We summarize existing work concerning three crucial interaction activities between the user and the system: the initial preference elicitation process, the preference refinement process, and the presentation of the system's recommendation results. Additionally, we will also cover recent evaluation frameworks that measure a recommender system's overall perceptive qualities and how these qualities influence users' behavioral intentions. The key results are summarized in a set of design guidelines that can provide useful suggestions to scholars and practitioners concerning the design and development of effective recommender systems. The survey also lays groundwork for researchers to pursue future topics that have not been covered by existing method

    Information Systems for Supporting Fire Emergency Response

    Get PDF
    Despite recent work on information systems, many first responders in emergency situations are unable to develop sufficient understanding of the situation to enable them to make good decisions. The record of the UK Fire and Rescue Service (FRS) has been particularly poor in terms of providing the information systems support to the fire fighters decision-making during their work. There is very little work on identifying the specific information needs of different types of fire fighters. Consequently, this study has two main aims. The first is to identify the information requirements of several specific members of the FRS hierarchy that lead to better Situation Awareness. The second is to identify how such information should be presented. This study was based on extensive data collected in the FRS brigades of three counties and focused on large buildings having a high-risk of fire and four key fire fighter job roles: Incident Commander, Sector Commander, Breathing Apparatus Entry Control Officer and Breathing Apparatus Wearers. The requirements elicitation process was guided by a Cognitive Task Analysis (CTA) tool: Goal Directed Information Analysis (GDIA), which was developed specifically for this study. Initially appropriate scenarios were developed. Based on the scenarios, 44 semi-structured interviews were carried out in three different elicitation phases with both novice and experienced fire fighters. Together with field observations of fire simulation and training exercises, fire and rescue related documentation; a comprehensive set of information needs of fire fighters was identified. These were validated through two different stages via 34 brainstorming sessions with the participation of a number of subject-matter experts. To explore appropriate presentation methods of information, software mock-up was developed. This mock-up is made up of several human computer interfaces, which were evaluated via 19 walkthrough and workshop sessions, involving 22 potential end-users and 14 other related experts. As a result, many of the methods used in the mock-up were confirmed as useful and appropriate and several refinements proposed. The outcomes of this study include: 1) A set of GDI Diagrams showing goal related information needs for each of the job roles with the link to their decision-making needs, 2) A series of practical recommendations suitable for designing of human computer interfaces of fire emergency response information system, 3) Human computer interface mock-ups for an information system to enhance Situation Awareness of fire fighters and 4) A conceptual architecture for the underlying information system. In addition, this study also developed an enhanced cognitive task analysis tool capable of exploring the needs of emergency first responders. This thesis contributes to our understanding of how information systems could be designed to enhance the Situation Awareness of first responders in a fire emergency. These results will be of particular interest to practicing information systems designers and developers in the FRS in the UK and to the wider academic community

    User effort vs. accuracy in rating-based elicitation

    Get PDF
    One of the unresolved issues when designing a recommender system is the number of ratings -- i.e., the profile length -- that should be collected from a new user before providing recommendations. A design tension exists, induced by two conflicting requirements. On the one hand, the system must collect "enough"ratings from the user in order to learn her/his preferences and improve the accuracy of recommendations. On the other hand, gathering more ratings adds a burden on the user, which may negatively affect the user experience. Our research investigates the effects of profile length from both a subjective (user-centric) point of view and an objective (accuracy-based) perspective. We carried on an offline simulation with three algorithms, and a set of online experiments involving overall 960 users and four recommender algorithms, to measure which of the two contrasting forces influenced by the number of collected ratings -- recommendations relevance and burden of the rating process -- has stronger effects on the perceived quality of the user experience. Moreover, our study identifies the potentially optimal profile length for an explicit, rating based, and human controlled elicitation strategy

    Discoverable Free Space Gesture Sets for Walk-Up-and-Use Interactions

    Get PDF
    abstract: Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However, much of the interaction design research for such systems is still focused on desktop and touch interactions. Current thinking in free-space gestures are limited in capability and imagination and most gesture studies have not attempted to identify gestures appropriate for public walk-up-and-use applications. A walk-up-and-use display must be discoverable, such that first-time users can use the system without any training, flexible, and not fatiguing, especially in the case of longer-term interactions. One mechanism for defining gesture sets for walk-up-and-use interactions is a participatory design method called gesture elicitation. This method has been used to identify several user-generated gesture sets and shown that user-generated sets are preferred by users over those defined by system designers. However, for these studies to be successfully implemented in walk-up-and-use applications, there is a need to understand which components of these gestures are semantically meaningful (i.e. do users distinguish been using their left and right hand, or are those semantically the same thing?). Thus, defining a standardized gesture vocabulary for coding, characterizing, and evaluating gestures is critical. This dissertation presents three gesture elicitation studies for walk-up-and-use displays that employ a novel gesture elicitation methodology, alongside a novel coding scheme for gesture elicitation data that focuses on features most important to usersā€™ mental models. Generalizable design principles, based on the three studies, are then derived and presented (e.g. changes in speed are meaningful for scroll actions in walk up and use displays but not for paging or selection). The major contributions of this work are: (1) an elicitation methodology that aids users in overcoming biases from existing interaction modalities; (2) a better understanding of the gestural features that matter, e.g. that capture the intent of the gestures; and (3) generalizable design principles for walk-up-and-use public displays.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Joint Workshop on Interfaces and Human Decision Making for Recommender Systems (IntRSā€™21)

    Get PDF
    Recommender systems were originally developed as interactive intelligent systems that can proactively guide users to items that match their preferences. Despite its origin on the crossroads of HCI and AI, the majority of research on recommender systems gradually focused on objective accuracy criteria paying less and less attention to how users interact with the system as well as the efficacy of interface designs from usersā€™ perspectives. This trend is reversing with the increased volume of research that looks beyond algorithms, into usersā€™ interactions, decision making processes, and overall experience. The series of workshops on Interfaces and Human Decision Making for Recommender Systems focuses on the "human side" of recommender systems. The goal of the research stream featured at the workshop is to improve usersā€™ overall experience with recommender systems by integrating different theories of human decision making into the construction of recommender systems and exploring better interfaces for recommender systems. In this summary,we introduce the JointWorkshop on Interfaces and Human Decision Making for Recommender Systems at RecSysā€™21, review its history, and discuss most important topics considered at the workshop
    • ā€¦
    corecore