23 research outputs found

    User association in cloud RANs with massive MIMO

    Get PDF
    This paper studies a resource allocation problem where a set of users within a specific region is served by cloud radio access network (C-RAN) structure consisting of a set of base-band units (BBUs) connected to a set of radio remote heads (RRHs) equipped with a large number of antennas via limited capacity front-haul links. User association to each RRH, BBU and front-haul link is essential to achieve high rates for cell-edge users under network limitations. We introduce two types of optimization variables to formulate this resource allocation problem: (i) C-RAN user association factor (UAF) including RRH, BBU and front-haul allocation for each user and (ii) power allocation vector. The formulated optimization problem is non-convex with high computational complexity. An efficient two-level iterative approach is proposed. The higher level consists of two steps where, in each step, one of these two optimization variables is fixed to derive the other. At the lower level, by applying different transformations and convexification techniques, the optimization problem in each step is broken down into a sequence of geometric programming (GP) problems to be solved by the successive convex approximation (SCA). Simulation results reveal the effectiveness of the proposed approach to increase the total throughput of network, specifically for cell-edge users. It outperforms the traditional user association approach, in which, each user is first assigned to the RRH with the largest average value of signal strength, and then, based on this fixed user association, front-haul link association and power allocation are optimized

    An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks

    Full text link
    The automotive industry is rapidly evolving towards connected and autonomous vehicles, whose ever more stringent data traffic requirements might exceed the capacity of traditional technologies for vehicular networks. In this scenario, densely deploying millimeter wave (mmWave) base stations is a promising approach to provide very high transmission speeds to the vehicles. However, mmWave signals suffer from high path and penetration losses which might render the communication unreliable and discontinuous. Coexistence between mmWave and Long Term Evolution (LTE) communication systems has therefore been considered to guarantee increased capacity and robustness through heterogeneous networking. Following this rationale, we face the challenge of designing fair and efficient attachment policies in heterogeneous vehicular networks. Traditional methods based on received signal quality criteria lack consideration of the vehicle's individual requirements and traffic demands, and lead to suboptimal resource allocation across the network. In this paper we propose a Quality-of-Service (QoS) aware attachment scheme which biases the cell selection as a function of the vehicular service requirements, preventing the overload of transmission links. Our simulations demonstrate that the proposed strategy significantly improves the percentage of vehicles satisfying application requirements and delivers efficient and fair association compared to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent Vehicles Symposiu
    corecore