216 research outputs found

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Perceived synchronization of mulsemedia services

    Get PDF
    Multimedia synchronization involves a temporal relationship between audio and visual media components. The presentation of "in-sync" data streams is essential to achieve a natural impression, as "out-of-sync" effects are often associated with user quality of experience (QoE) decrease. Recently, multi-sensory media (mulsemedia) has been demonstrated to provide a highly immersive experience for its users. Unlike traditional multimedia, mulsemedia consists of other media types (i.e., haptic, olfaction, taste, etc.) in addition to audio and visual content. Therefore, the goal of achieving high quality mulsemedia transmission is to present no or little synchronization errors between the multiple media components. In order to achieve this ideal synchronization, there is a need for comprehensive knowledge of the synchronization requirements at the user interface. This paper presents the results of a subjective study carried out to explore the temporal boundaries within which haptic and air-flow media objects can be successfully synchronized with video media. Results show that skews between sensorial media and multimedia might still give the effect that the mulsemedia sequence is "in-sync" and provide certain constraints under which synchronization errors might be tolerated. The outcomes of the paper are used to provide recommendations for mulsemedia service providers in order for their services to be associated with acceptable user experience levels, e.g. haptic media could be presented with a delay of up to 1 s behind video content, while air-flow media could be released either 5 s ahead of or 3 s behind video content

    Quantifying subjective quality evaluations for mobile video watching in a semi-living lab context

    Get PDF
    This paper discusses results from an exploratory study in which Quality of Experience aspects related to mobile video watching were investigated in a semi-living lab setting. More specifically, we zoom in on usage patterns in a natural research context and on the subjective evaluation of high and low-resolution movie trailers that are transferred to a mobile device using two transmission protocols for video (i.e., real-time transport protocol and progressive download using HTTP). User feedback was collected by means of short questionnaires on the mobile device, combined with traditional pen and paper diaries. The subjective evaluations regarding the general technical quality, perceived distortion, fluentness of the video, and loading speed are studied and the influence of the transmission protocol and video resolution on these evaluations is analyzed. Multinomial logistic regression results in a model to estimate the subjective evaluations regarding the perceived distortion and loading speed based on objectively-measured parameters of the video session

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Do Personality and Culture Influence Perceived Video Quality and Enjoyment?

    Get PDF
    The interplay between system, context and human factors is important in perception of multimedia quality. However, studies on human factors are very limited in comparison to those for system and context factors. This article presents an attempt to explore the influence of personality and cultural traits on perception of multimedia quality. As a first step, a database consisting of 144 video sequences from 12 short movie excerpts has been assembled and rated by 114 participants from a cross-cultural population. Thereby providing a useful ground-truth for this (as well as future) study. As a second step, three statistical models are compared: (i) a baseline model to only consider system factors; (ii) an extended model to include personality and culture; and (iii) an optimistic model in which each participant is modeled. As a third step, predictive models based on content, affect, system, and human factors are trained to generalize the statistical findings. As shown by statistical analysis, personality and cultural traits represent 9.3% of the variance attributable to human factors and human factors overall predict an equal or higher proportion of variance compared to system factors. Moreover, the quality-enjoyment correlation varies across the excerpts. Predictive models trained by including human factors demonstrate about 3% and 9% improvement over models trained solely based on system factors for predicting perceived quality and enjoyment. As evidenced by this, human factors indeed are important in perceptual multimedia quality, but the results suggest further investigation of moderation effects and a broader range of human factors is necessary

    User-centered EEG-based multimedia quality assessment

    Full text link

    User Quality of Experience-aware Multimedia Streaming over Wireless Home Area Network

    Get PDF
    For multimedia streaming over wireless networks, there is a trade-off between the capacity of the wireless links and the end-user perceived-quality, which can be affected by the compression scheme used, content characteristics and adaptation algorithm (if any). In this paper, this trade-off is investigated for streaming various motion content multimedia over an IEEE 802.11b-based Wireless-Home Area Network using the Quality-Oriented Adaptation Scheme (QOAS). QOAS performance is compared to that of a non-adaptive scheme when using MPEG-2 and MPEG-4 encoding in terms of average end-user perceived quality, number of streaming sessions concurrently supported, loss rate, delay, jitter and total throughput. Simulation results show that by using QOAS and MPEG-4 encoded streams a much higher number of concurrent streams are supported at an average quality above “good” level on the ITU-T five-point quality scale in comparison with other situations. In this case all the other streaming performance parameters were also significantly better

    Quality of experience in digital mobile multimedia services

    Get PDF
    People like to consume multimedia content on mobile devices. Mobile networks can deliver mobile TV services but they require large infrastructural investments and their operators need to make trade-offs to design worthwhile experiences. The approximation of how users experience networked services has shifted from the inadequate packet level Quality of Service (QoS) to the user perceived Quality of Experience (QoE) that includes content, user context and their expectations. However, QoE is lacking concrete operationalizations for the visual experience of content on small, sub-TV resolution screens displaying transcoded TV content at low bitrates. The contribution of my thesis includes both substantive and methodological results on which factors contribute to the QoE in mobile multimedia services and how. I utilised a mix of methods in both lab and field settings to assess the visual experience of multimedia content on mobile devices. This included qualitative elicitation techniques such as 14 focus groups and 75 hours of debrief interviews in six experimental studies. 343 participants watched 140 hours of realistic TV content and provided feedback through quantitative measures such as acceptability, preferences and eye-tracking. My substantive findings on the effects of size, resolution, text quality and shot types can improve multimedia models. My substantive findings show that people want to watch mobile TV at a relative size (at least 4cm of screen height) similar to living room TV setups. In order to achieve these sizes at 35cm viewing distance users require at least QCIF resolution and are willing to scale it to a much lower angular resolution (12ppd) then what video quality research has found to be the best visual quality (35ppd). My methodological findings suggest that future multimedia QoE research should use a mixed methods approach including qualitative feedback and viewing ratios akin to living room setups to meet QoE’s ambitious scope

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels
    corecore