3 research outputs found

    The digital harms of smart home devices:a systematic literature review

    Get PDF
    The connection of home electronic devices to the internet allows remote control of physical devices and involves the collection of large volumes of data. With the increase in the uptake of Internet-of-Things home devices, it becomes critical to understand the digital harms of smart homes. We present a systematic literature review on the security and privacy harms of smart homes. PRISMA methodology is used to systematically review 63 studies published between January 2011 and October 2021; and a review of known cases is undertaken to illustrate the literature review findings with real-world scenarios. Published literature identifies that smart homes may pose threats to confidentiality (unwanted release of information), authentication (sensing information being falsified) and unauthorised access to system controls. Most existing studies focus on privacy intrusions as a prevalent form of harm against smart homes. Other types of harms that are less common in the literature include hacking, malware and DoS attacks. Digital harms, and data associated with these harms, may vary extensively across smart devices. Most studies propose technical measures to mitigate digital harms, while fewer consider social prevention mechanisms. We also identify salient gaps in research, and argue that these should be addressed in future crossdisciplinary research initiatives

    User Presence Inference via Encrypted Traffic of Wireless Camera in Smart Homes

    No full text
    Wireless cameras are widely deployed in smart homes for security guarding, baby monitoring, fall detection, and so on. Those security cameras, which are supposed to protect users, however, may in turn leak a user’s personal privacy. In this paper, we reveal that attackers are able to infer whether users are at home or not, that is, the user presence, by eavesdropping the traffic of wireless cameras from distance. We propose HomeSpy, a system that infers user presence by inspecting the intrinsic pattern of the wireless camera traffic. To infer the user presence, HomeSpy first eavesdrops the wireless traffic around the target house and detects the existence of wireless cameras with a Long Short-Term Memory (LSTM) network. Then, HomeSpy infers the user presence using the bitrate variation of the wireless camera traffic based on a cumulative sum control chart (CUSUM) algorithm. We implement HomeSpy on the Android platform and validate it on 20 cameras. The evaluation results show that HomeSpy can achieve a successful attack rate of 97.2%
    corecore