10,602 research outputs found

    User independent Emotion Recognition with Residual Signal-Image Network

    Full text link
    User independent emotion recognition with large scale physiological signals is a tough problem. There exist many advanced methods but they are conducted under relatively small datasets with dozens of subjects. Here, we propose Res-SIN, a novel end-to-end framework using Electrodermal Activity(EDA) signal images to classify human emotion. We first apply convex optimization-based EDA (cvxEDA) to decompose signals and mine the static and dynamic emotion changes. Then, we transform decomposed signals to images so that they can be effectively processed by CNN frameworks. The Res-SIN combines individual emotion features and external emotion benchmarks to accelerate convergence. We evaluate our approach on the PMEmo dataset, the currently largest emotional dataset containing music and EDA signals. To the best of author's knowledge, our method is the first attempt to classify large scale subject-independent emotion with 7962 pieces of EDA signals from 457 subjects. Experimental results demonstrate the reliability of our model and the binary classification accuracy of 73.65% and 73.43% on arousal and valence dimension can be used as a baseline

    ICface: Interpretable and Controllable Face Reenactment Using GANs

    Get PDF
    This paper presents a generic face animator that is able to control the pose and expressions of a given face image. The animation is driven by human interpretable control signals consisting of head pose angles and the Action Unit (AU) values. The control information can be obtained from multiple sources including external driving videos and manual controls. Due to the interpretable nature of the driving signal, one can easily mix the information between multiple sources (e.g. pose from one image and expression from another) and apply selective post-production editing. The proposed face animator is implemented as a two-stage neural network model that is learned in a self-supervised manner using a large video collection. The proposed Interpretable and Controllable face reenactment network (ICface) is compared to the state-of-the-art neural network-based face animation techniques in multiple tasks. The results indicate that ICface produces better visual quality while being more versatile than most of the comparison methods. The introduced model could provide a lightweight and easy to use tool for a multitude of advanced image and video editing tasks.Comment: Accepted in WACV-202

    Frustration recognition from speech during game interaction using wide residual networks

    Get PDF
    ABSTRACT Background Although frustration is a common emotional reaction during playing games, an excessive level of frustration can harm users’ experiences, discouraging them from undertaking further game interactions. The automatic detection of players’ frustration enables the development of adaptive systems, which through a real-time difficulty adjustment, would adapt the game to the user’s specific needs; thus, maximising players experience and guaranteeing the game success. To this end, we present our speech-based approach for the automatic detection of frustration during game interactions, a specific task still under-explored in research. Method The experiments were performed on the Multimodal Game Frustration Database (MGFD), an audiovisual dataset—collected within the Wizard-of-Oz framework—specially tailored to investigate verbal and facial expressions of frustration during game interactions. We explored the performance of a variety of acoustic feature sets, including Mel-Spectrograms and Mel-Frequency Cepstral Coefficients (MFCCs), as well as the low dimensional knowledge-based acoustic feature set eGeMAPS. Due to the always increasing improvements achieved by the use of Convolutional Neural Networks (CNNs) in speech recognition tasks, unlike the MGFD baseline—based on Long Short-Term Memory (LSTM) architecture and Support Vector Machine (SVM) classifier—in the present work we take into consideration typically used CNNs, including ResNets, VGG, and AlexNet. Furthermore, given the still open debate on the shallow vs deep networks suitability, we also examine the performance of two of the latest deep CNNs, i. e., WideResNets and EfficientNet. Results Our best result, achieved with WideResNets and Mel-Spectrogram features, increases the system performance from 58.8 % Unweighted Average Recall (UAR) to 93.1 % UAR for speech-based automatic frustration recognition
    • …
    corecore