20,150 research outputs found

    FAN: Fatigue-Aware Network for Click-Through Rate Prediction in E-commerce Recommendation

    Full text link
    Since clicks usually contain heavy noise, increasing research efforts have been devoted to modeling implicit negative user behaviors (i.e., non-clicks). However, they either rely on explicit negative user behaviors (e.g., dislikes) or simply treat non-clicks as negative feedback, failing to learn negative user interests comprehensively. In such situations, users may experience fatigue because of seeing too many similar recommendations. In this paper, we propose Fatigue-Aware Network (FAN), a novel CTR model that directly perceives user fatigue from non-clicks. Specifically, we first apply Fourier Transformation to the time series generated from non-clicks, obtaining its frequency spectrum which contains comprehensive information about user fatigue. Then the frequency spectrum is modulated by category information of the target item to model the bias that both the upper bound of fatigue and users' patience is different for different categories. Moreover, a gating network is adopted to model the confidence of user fatigue and an auxiliary task is designed to guide the learning of user fatigue, so we can obtain a well-learned fatigue representation and combine it with user interests for the final CTR prediction. Experimental results on real-world datasets validate the superiority of FAN and online A/B tests also show FAN outperforms representative CTR models significantly

    Alleviating Information Cocoons and Fatigue with Serendipity: Effect of Relevant Diversification and its Timing

    Get PDF
    With the rapid development of online media, in which personalized recommendations are provided, users are gaining increasingly narrow access to information, trapping them in so-called “information cocoons.” At the same time, the increase in homogenized content has brought boredom and fatigue, which are not conducive to the long-term interests of a platform. Grounded in the entertainment consumption context, as represented by the Tik Tok short video platform, this study focuses on the information cocoon reinforcement and browsing fatigue phenomena caused by the lack of proper diversification. Then, to mitigate these issues, this paper proposes relevant diversified content and diversification timing countermeasures to optimize the “what” and “when” technical designs. We explore the role of perceived serendipity as a key path toward user diversity acceptance and browsing duration, thus alleviating the phenomenon of information cocoons and browsing fatigue and facilitating the common development of platforms and users

    Report on the Information Retrieval Festival (IRFest2017)

    Get PDF
    The Information Retrieval Festival took place in April 2017 in Glasgow. The focus of the workshop was to bring together IR researchers from the various Scottish universities and beyond in order to facilitate more awareness, increased interaction and reflection on the status of the field and its future. The program included an industry session, research talks, demos and posters as well as two keynotes. The first keynote was delivered by Prof. Jaana Kekalenien, who provided a historical, critical reflection of realism in Interactive Information Retrieval Experimentation, while the second keynote was delivered by Prof. Maarten de Rijke, who argued for more Artificial Intelligence usage in IR solutions and deployments. The workshop was followed by a "Tour de Scotland" where delegates were taken from Glasgow to Aberdeen for the European Conference in Information Retrieval (ECIR 2017

    Dynamic Learning of Sequential Choice Bandit Problem under Marketing Fatigue

    Full text link
    Motivated by the observation that overexposure to unwanted marketing activities leads to customer dissatisfaction, we consider a setting where a platform offers a sequence of messages to its users and is penalized when users abandon the platform due to marketing fatigue. We propose a novel sequential choice model to capture multiple interactions taking place between the platform and its user: Upon receiving a message, a user decides on one of the three actions: accept the message, skip and receive the next message, or abandon the platform. Based on user feedback, the platform dynamically learns users' abandonment distribution and their valuations of messages to determine the length of the sequence and the order of the messages, while maximizing the cumulative payoff over a horizon of length T. We refer to this online learning task as the sequential choice bandit problem. For the offline combinatorial optimization problem, we show that an efficient polynomial-time algorithm exists. For the online problem, we propose an algorithm that balances exploration and exploitation, and characterize its regret bound. Lastly, we demonstrate how to extend the model with user contexts to incorporate personalization
    • …
    corecore