33,594 research outputs found

    Echo State Networks: analysis, training and predictive control

    Full text link
    The goal of this paper is to investigate the theoretical properties, the training algorithm, and the predictive control applications of Echo State Networks (ESNs), a particular kind of Recurrent Neural Networks. First, a condition guaranteeing incremetal global asymptotic stability is devised. Then, a modified training algorithm allowing for dimensionality reduction of ESNs is presented. Eventually, a model predictive controller is designed to solve the tracking problem, relying on ESNs as the model of the system. Numerical results concerning the predictive control of a nonlinear process for pH neutralization confirm the effectiveness of the proposed algorithms for the identification, dimensionality reduction, and the control design for ESNs.Comment: 6 pages,5 figures, submitted to European Control Conference (ECC

    Siamese recurrent neural networks for the robust classification of grid disturbances in transmission power systems considering unknown events

    Get PDF
    The automated identification and localisation of grid disturbances is a major research area and key technology for the monitoring and control of future power systems. Current recognition systems rely on sufficient training data and are very error-prone to disturbance events, which are unseen during training. This study introduces a robust Siamese recurrent neural network using attention-based embedding functions to simultaneously identify and locate disturbances from synchrophasor data. Additionally, a novel double-sigmoid classifier is introduced for reliable differentiation between known and unknown disturbance types and locations. Different models are evaluated within an open-set classification problem for a generic power transmission system considering different unknown disturbance events. A detailed analysis of the results is provided and classification results are compared with a state-of-the-art open-set classifier

    Generative Adversarial Network with Convolutional Wavelet Packet Transforms for Automated Speaker Recognition and Classification

    Get PDF
    Speech is an effective mode of communication that always conveys abundant and pertinent information, such as the gender, accent, and other distinguishing characteristics of the speaker. These distinctive characteristics allow researchers to identify human voices using artificial intelligence (AI) techniques, which are useful for forensic voice verification, security and surveillance, electronic voice eavesdropping, mobile banking, and mobile purchasing. Deep learning (DL) and other advances in hardware have piqued the interest of researchers studying automatic speaker identification (SI). In recent years, Generative Adversarial Networks (GANs) have demonstrated exceptional ability in producing synthetic data and improving the performance of several machine learning tasks. The capacity of Convolutional Wavelet Packet Transform (CWPT) and Generative Adversarial Networks are combined in this paper to propose a novel way of enhancing the accuracy and robustness of Speaker Recognition and Classification systems. Audio signals are dissected using the Convolutional Wavelet Packet Transform into a multi-resolution, time-frequency representation that faithfully preserves local and global characteristics. The improved audio features better precisely describe speech traits and handle pitch, tone, and pronunciation variations that are frequent in speaker recognition tasks. Using GANs to create synthetic speech samples, our suggested method GAN-CWPT enriches the training data and broadens the dataset's diversity. The generator and discriminator components of the GAN architecture have been tweaked to produce realistic speech samples with attributes quite similar to genuine speaker utterances. The new dataset enhances the Speaker Recognition and Classification system's robustness and generalization, even in environments with little training data. We conduct extensive tests on standard speaker recognition datasets to determine how well our method works. The findings demonstrate that, compared to conventional methods, the GAN-CWPTs combination significantly improves speaker recognition, classification accuracy, and efficiency. Additionally, the suggested model GAN-CWPT exhibits stronger generalization on unknown speakers and excels even with loud and poor audio inputs

    Evaluation of preprocessors for neural network speaker verification

    Get PDF
    corecore