2 research outputs found

    Reliability assessment of electric power systems using genetic algorithms

    Get PDF
    The first part of this dissertation presents an innovative method for the assessment of generation system reliability. In this method, genetic algorithm (GA) is used as a search tool to truncate the probability state space and to track the most probable failure states. GA stores system states, in which there is generation deficiency to supply system maximum load, in a state array. The given load pattern is then convoluted with the state array to obtain adequacy indices. In the second part of the dissertation, a GA based method for state sampling of composite generation-transmission power systems is introduced. Binary encoded GA is used as a state sampling tool for the composite power system network states. A linearized optimization load flow model is used for evaluation of sampled states. The developed approach has been extended to evaluate adequacy indices of composite power systems while considering chronological load at buses. Hourly load is represented by cluster load vectors using the k-means clustering technique. Two different approaches have been developed which are GA parallel sampling and GA sampling for maximum cluster load vector with series state revaluation. The developed GA based method is used for the assessment of annual frequency and duration indices of composite system. The conditional probability based method is used to calculate the contribution of sampled failure states to system failure frequency using different component transition rates. The developed GA based method is also used for evaluating reliability worth indices of composite power systems. The developed GA approach has been generalized to recognize multi-state components such as generation units with derated states. It also considers common mode failure for transmission lines. Finally, a new method for composite system state evaluation using real numbers encoded GA is developed. The objective of GA is to minimize load curtailment for each sampled state. Minimization is based on the dc load flow model. System constraints are represented by fuzzy membership functions. The GA fitness function is a combination of these membership values. The proposed method has the advantage of allowing sophisticated load curtailment strategies, which lead to more realistic load point indices

    Multiple objective decision support framework for configuring, loading and reconfiguring manufacturing cells

    Get PDF
    The potential advantages of Cellular Manufacturing Systems (CMS) are very well known in industry. However it is also shown that their performance is very sensitive to changing production requirements. The detrimental effects of changing production requirements on the performance of CMS can be alleviated by "implementing better manufacturing cell designs", "employing effective part loading strategies" and "reconfiguration". This thesis proposes a decision support framework that provides solution strategies for manufacturing cell design, cell loading and reconfiguration problems. There are three main modules in the proposed framework, named as cell formation, loading and reconfiguration. Each module can handle multiple objectives and integrates several planning and design functions, by considering the capabilities of manufacturing resources. Reconfiguration decisions are made explicitly in the proposed framework by answering the questions "when to reconfigure?" and "how to reconfigure?”. In order to answer these questions, the modules of the proposed framework are interconnected. The cell formation module creates the initial set of cells. The loading module makes the 'part to cell assignment' and the scheduling in each production period. The reconfiguration module regenerates manufacturing cells, if the loading module can not find a satisfactory solution. The cell formation module solves the part-machine cell formation problem by simultaneously considering multiple objectives and constraints. Overlapping machine capabilities and generic part process plans are taken into account in the model formulation. A new approach for the evaluation of machine capacities is also presented. Results of the comparative study show that the proposed cell formation method gives better results than several other cell-formation procedures. The manufacturing cells are formed with improved capacity utilisation levels and reduced extra machine requirements. The method is also more likely to produce independent manufacturing cells with higher flexibility. The loading module solves the 'part to cell assignment' and 'cell scheduling' problems simultaneously for cellular manufacturing applications. Alternative parts to cell and machine assignments are considered by making use of generic part process plans in the model formulation. A parametric simulation model is developed to determine cell schedules for a given part assignment scenario. The proposed loading system can assess performance of the CMS in each production period. Therefore a decision can be made about its reconfiguration. It is also shown that the efficiency of CMSs facing changing production requirements can be improved and/or sustained by using the proposed loading strategy. The reconfiguration module takes the existing cell configuration as the current solution and generates a new solution from it, to enhance its performance. The model is objective driven and considers multiple objectives and constraints within a goal programming framework. The virtual cell concept is applied as the reconfiguration strategy. In the virtual cell approach the physical locations of machines are not changed, only cell memberships of machines are updated after reconfiguration. The results of the test studies showed that it is possible to improve the performance of CMS by reconfiguring it using virtual cells. The cell formation, loading and reconfiguration problems issues discussed in this thesis are combinatorially complex multiple objective optimisation problems. Additionally simulation is used to evaluate several of the objective functions used in the modelling of loading and reconfiguration problems. Classical optimisation algorithms have various limitations in solving such problems. Therefore Tabu Search (TS) based multiple objective optimisation algorithms are developed. The proposed TS algorithms are general-purpose and can also be used to solve other multiple objective optimisation problems. The results obtained from several test problems show the proposed TS algorithms to be very effective in solving multiple objective optimisation problems. More than 500/0 improvement in solution quality is obtained in some test problems
    corecore