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ABSTRACT

Reliability Assessment of Electric Power Systems

Using Genetic Algorithms. (August 2004)

Nader Amin Aziz Samaan, B.S., University of Alexandria, Egypt;

M.S., University of Alexandria, Egypt.

                                Chair of Advisory Committee: Dr. Chanan Singh

The first part of this dissertation presents an innovative method for the assessment

of generation system reliability. In this method, genetic algorithm (GA) is used as a

search tool to truncate the probability state space and to track the most probable failure

states. GA stores system states, in which there is generation deficiency to supply system

maximum load, in a state array.  The given load pattern is then convoluted with the state

array to obtain adequacy indices.

In the second part of the dissertation, a GA based method for state sampling of

composite generation-transmission power systems is introduced. Binary encoded GA is

used as a state sampling tool for the composite power system network states. A

linearized optimization load flow model is used for evaluation of sampled states. The

developed approach has been extended to evaluate adequacy indices of composite power

systems while considering chronological load at buses. Hourly load is represented by

cluster load vectors using the k-means clustering technique. Two different approaches

have been developed which are GA parallel sampling and GA sampling for maximum

cluster load vector with series state revaluation.

The developed GA based method is used for the assessment of annual frequency

and duration indices of composite system. The conditional probability based method is

used to calculate the contribution of sampled failure states to system failure frequency

using different component transition rates. The developed GA based method is also used

for evaluating reliability worth indices of composite power systems. The developed GA
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approach has been generalized to recognize multi-state components such as generation

units with derated states. It also considers common mode failure for transmission lines.

Finally, a new method for composite system state evaluation using real numbers

encoded GA is developed. The objective of GA is to minimize load curtailment for each

sampled state.  Minimization is based on the dc load flow model. System constraints are

represented by fuzzy membership functions. The GA fitness function is a combination of

these membership values. The proposed method has the advantage of allowing

sophisticated load curtailment strategies, which lead to more realistic load point indices.
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 CHAPTER I

INTRODUCTION

The primary objective of an electric utility is to provide electricity to satisfy its

customer needs and expectations. This is expected to be achieved at a reasonable level of

reliability and as economically as possible. Recent trends of power industry towards

deregulation coupled with the diversity in customer requirements have generated a

competitive market for power delivery. Power companies will need to perform in the

most cost effective manner in order to maximize return to their investors while

maintaining an acceptable reliability and quality of supply to consumers. Within this

competitive environment, fast and accurate power system reliability assessment

techniques can play an important role in shaping the criterion for judging the robustness

of delivered services.

Reliability of power supply has always been an important issue in the electric

utility systems. Availability of high quality uninterrupted electric power is essential to

the industrial and economic growth of a nation. It is evident from the major power

outage events during the last year that reliability of electric power networks cannot be

taken for granted in the new free market structure.

The largest power outage in the history of North America occurred on August

14th, 2003 and had catastrophic social and economical effects. This blackout effected

more than 50 million people in the north east of USA and Canada. People were trapped

in subways and elevators, there were no traffic lights or transportation to return home,

communication system was paralyzed and people had to spend  night in the dark. Power

restoration took between 10 hours up to several days for some customers. Power

restoration after such a widespread blackout was a complicated process and many

customers were subject to rolling load shedding for up to one week. Just few weeks after

                                                          
  This dissertation follows the style and format of IEEE Transactions on Power Systems.
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this event, major blackouts happened in the United Kingdom, Sweden and Italy.

With the current restructuring in power systems, these blackouts raise warning

flags indicating that  something may be going wrong. Perhaps one of the reasons is that

most utilities are not basing their decisions on well designed probabilistic reliability

studies. Probabilistic reliability studies can determine weak points in the power network

and consequently find solutions to improve  reliability at load points.

More realistic and sophisticated but easy to apply techniques for probabilistic

power system reliability studies are needed. These new tools should be able to overcome

the drawbacks of conventional tools used for power system reliability assessment. These

new tools should also be able to adapt to the current changes in the power market.

I. Research Objectives and Dissertation Organization

Even though considerable amount of research work has been done in the area of

power system reliability, there is still a need for more suitable methods for representing

the system more realistically and yet be computationally tractable. Although some

analytical methods are available, most of the research in composite system reliability

uses state sampling using Monte Carlo simulation. Evaluation of sampled states is still

very computation intensive but has not received much attention because of complexity

of this problem.

Genetic algorithms (GAs) have shown a rapid growth of applications in power

systems. An area which has not yet been investigated  for their application is power

system reliability. Application of GAs to power systems is found in  areas such as

economic dispatch, power system planning, reactive power allocation and  the load flow

problem. In all these applications, GA is used primarily as an optimization tool.

The objective of this dissertation is to develop several novel and efficient GA

based techniques for power system reliability assessment. These techniques use GA as a

smart state sampling tool. These techniques have the advantage of being intelligent,

requiring less computational effort, flexible to consider different factors such as

chronological load curves and multi-state components. These techniques are applied to
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calculate adequacy, frequency and duration, and reliability cost/worth indices. This

dissertation also presents an innovative approach for state evaluation. This approach uses

GA guided by Fuzzy Logic constraints to implement sophisticated practical load

curtailment techniques.

The organization of this dissertation is as  follows:

Chapter II includes a brief review of power system reliability studies, classical and

recent methods developed for generation and composite power system reliability

assessment. It also gives a general idea of genetic algorithms.

Chapter III introduces a new method to calculate generation system adequacy

indices.   The proposed method is based on a simple genetic algorithm which searches

the state space to scan the most probable failure states and stores them in a state array.

GA search process is guided through its fitness function. Hourly load values are then

discretely convoluted with the state array to obtain various adequacy indices of

generating system.  The use of the state array to get information about contribution of

system states and different generating units combinations to system failure is

demonstrated. This can be helpful in some decision making.

Chapter IV develops an innovative method for composite power system reliability.

The proposed method uses GA as an intelligent search tool to search for failure states

that result in load curtailment. The performance of GA depends on the suitable choice of

the chromosome evaluation function. States sampled by GA are saved with all their

related data in the state array. After finishing the search process, states saved in the state

array are used to calculate the annualized adequacy indices for the whole system and for

load buses. A linear programming model is used to evaluate each state taking into

consideration importance of loads. It is shown that the proposed method is superior over

other conventional methods due to the intelligence it uses in its search process.

Moreover, it has the merits of reporting the most probable failure scenarios and most

severe ones. Case studies on the RBTS test system are given.

In chapter V the preceding method has been extended to evaluate adequacy indices

of composite power systems while considering chronological load at buses. Hourly load
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is represented by cluster load vectors using the k-means clustering technique. The GA is

used as a state sampling tool for the composite power system network. Binary encoded

GA is used to represent system states. Two different approaches have been developed. In

the first approach GA samples failure states for each load level separately. Thus,

adequacy indices are calculated for each load level and then combined to obtain the

annual adequacy indices. In the second approach, GA samples failure states only with

load buses assigned the maximum cluster load vector. Failure states are then reevaluated

with lower cluster load vectors until a success state is obtained or all cluster load levels

have been evaluated. In both approaches, GA is able to trace failure states in a more

intelligent manner than conventional methods. A linearized optimization load flow

model is used for the evaluation of sampled states. Case studies on the RBTS test system

considering correlated chronological load curves of load buses are presented.  Results

obtained from the two different approaches are compared and analyzed.

Chapter VI uses the developed GA based technique to calculate annual frequency

and duration indices of the composite system. The system hourly load for the year is

represented as a multi-state component using k-means clustering technique. Transition

rates between the load states are calculated. The conditional probability based method is

used to calculate the frequency of sampled failure states using different component

transition rates. The GA samples network failure states with the system load assigned its

maximum state value. Failure states are then reevaluated with lower load states until a

success state is obtained or all load states have been evaluated.

Chapter VII develops a GA based method for evaluating reliability worth indices

of composite power systems. An optimization model based on linearized load flow  is

used for the evaluation of sampled states. Two different objectives are used in state

evaluation. The first objective is to minimize load curtailment considering load category

and load bus relative importance. The second objective is to minimize load interruption

cost. Instead of using the raw interruption cost associated with failure state mean

duration time, random sampling is used to calculate mean interruption cost associated

with each failure state.
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Chapter VIII introduces an improved GA based approach for the assessment of

composite power system reliability. This enhanced approach recognizes multi-state

components such as generation units with derated states. It also considers common mode

failure for transmission lines. Binary encoded GA is used as a state sampling tool for the

composite power system network states. Each two-state component is represented by

one gene. Meanwhile, every multi-state component is represented by two or more genes,

e.g., two genes are able to represent up to four-state component. Both annual and

annualized adequacy indices are calculated. Case studies on a sample test system

considering chronological load curves, derated states and common mode failures are

presented.  Results are analyzed to determine the effect of considering multi-state

components.

Chapter IX presents a new method for composite system state evaluation using

GA.  The objective of GA is to minimize load curtailment for each sampled state.

Minimization is based on the dc load flow model. System constraints are represented by

fuzzy membership functions.  Membership value indicates the degree of satisfaction of

each constraint for an individual in a GA population. The GA fitness function is a

combination of these membership values. The proposed method has the advantage of

allowing sophisticated load curtailment strategies which lead to more realistic load point

indices.

Finally, chapter X gives the summary of this dissertation and reviews of the

significance of this research. It also suggests future research topics.

Appendix A gives data of the RBTS test system.
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CHAPTER II

REVIEW

I. Reliability Assessment of Electric Power Systems

A. Introduction

Reliability is a measure of the ability of a system to perform its designated

functions under the conditions within which it was designed to operate. Given this

concept, power system reliability is a measure of the ability to deliver electricity to all

points of utilization at acceptable standards and in the amount desired.

Power systems reliability assessment, both deterministic and probabilistic, is

divided into two basic aspects: system adequacy and system security [1].  System

adequacy examines the availability of sufficient facilities within the system to satisfy the

consumer load demand without violating system operational constraints. These include

the facilities necessary to generate sufficient energy and the associated transmission and

distribution facilities required to transport the energy to consumer load points. Adequacy

is therefore associated with static conditions which do not include system disturbances.

System security presents the ability of the system to respond to sudden shocks or

disturbances arising within the system such as the  loss of major generation and/or

transmission facilities and  short circuit faults. Under such condition, security studies

show system ability to survive without cascading failures or loss of stability.   

Power system reliability evaluation is important for studying the current system to

identify weak points in the system, determining what enforcement is needed to meet

future demand and planning for new reliable power system, i.e., network expansion.

Reliability studies is vital to  avoid  economic and social losses resulting from power

outages.
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Adequacy analysis of power systems essentially consists of identification and

evaluation of failure states, states in which the power system can not satisfy customer

demand and load shedding action is needed to maintain the system integrity. Since the

number of possible states can run into millions, straightforward enumeration and

evaluation is not feasible even for moderate sized networks. Monte Carlo simulation is

currently the most common method used in states sampling, yet it suffers from three

major drawbacks. The first one is the excessive simulation time. The second one is the

lack of information about outage scenarios that can happen and the contribution of

different system components to these outages. The third one is the difficulty to sample

failure states when system reliability is very high which is the case in most practical

systems.

Adequacy assessment methods in power systems are mainly applied to three

different hierarchical levels [1]. At Hierarchical level I (HLI), the total system

generation is examined to determine its adequacy to meet the total system load

requirements. This is usually termed "generating capacity reliability evaluation". The

transmission  system and its ability to transfer the generated energy to the consumer load

points are ignored in HLI. The only concern is estimating the necessary generation

capacity to satisfy the demand and to have sufficient capacity to perform corrective and

preventive maintenance on the generating facilities.

In HLII studies, the adequacy analysis is usually termed composite system or bulk

transmission system evaluation. HLII studies can be used to assess the adequacy of an

existing or proposed system including the impact of various reinforcement alternatives at

both the generation and transmission levels. In HLII, two sets of indices can be

evaluated; the first set includes individual load point indices and the second set includes

overall system indices. These indices are complementary, not alternatives. The system

indices give an assessment of the overall  adequacy and the load-point indices indicate

the reliability of individual buses and provide input values to the next hierarchical level.

The HLIII studies include all the three functional zones of the power system,

starting at generation points and terminating at the individual consumer load points. To
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decrease complexity of these studies, the distribution functional zone is usually analyzed

as a separate entity using the HLII load-point indices as the input. The objective of the

HLIII study is to obtain suitable adequacy indices at the actual consumer load points.

Power system reliability has been an active research area for more than three

decades. A comprehensive recent list of publications can be seen from bibliographies on

power system reliability evaluation [2], [3].  A survey of the state-of-art models and

analysis methods used in power system reliability assessment is given in [4].

B. Reliability Evaluation of Generation Systems

Generation system reliability evaluation is the most mature area in power system

reliability studies. Many methods have been developed to calculate the adequacy of

power system generation (HLI).  These methods can be divided into two main

categories, analytical methods and simulation methods using Monte Carlo technique.

The analytical methods are further divided into two main categories, the discrete

distribution methods and  continuous distribution methods. The most efficient method is

the unit addition algorithm presented in [5]. Different Monte Carlo strategies are given

in detail in [6].

C. Reliability Evaluation of Composite Generation-Transmission Systems

Adequacy assessment of composite generation-transmission systems is a more

complex task. It is divided into two main parts, state sampling and state evaluation. Each

sampled state consists of the states of generating units and transmission lines, some of

them are in the up state and others are in the down state. The purpose of state evaluation

is to judge if the sampled state represents a failure or success state. After state sampling

stops, data from evaluated states is used to calculate adequacy indices of the composite

power system. A wide range of techniques has been proposed for composite system

reliability evaluation. These techniques can be generally categorized as either analytical

or simulation.

Analytical techniques represent the system by analytical models and evaluate the
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indices from these models using mathematical solutions. The most widely used

analytical method is the contingency enumeration approach [7].

Monte Carlo simulation methods estimate the indices by simulating the actual

process and random behavior of the system. Monte Carlo simulation methods are

divided into random sampling methods and sequential methods. In both techniques,

Monte Carlo simulation is used for state sampling.  Sampled states are evaluated through

linearized flow equations to calculate the amount of load curtailment if needed [8], [9].

Monte Carlo techniques can take a considerable computation time for convergence.

Convergence can be accelerated by using techniques such as variance reduction to

reduce the number of the analyzed system states [10].

A Monte Carlo simulation approach to generation-transmission reliability

evaluation assuming the loads are defined by fuzzy numbers was developed in [11]. In

this approach, data uncertainties were modeled more adequately, system component

outages were represented by probabilistic models and load uncertainties were modeled

by fuzzy numbers. For each sampled state, one can obtain the power not supplied

membership function by running a fuzzy optimal power flow.

Hybrid methods that take the advantages of both analytical methods and Monte

Carlo simulation has been developed in [12]. This technique was based on pruning the

state space of  composite systems. This is achieved by performing Monte Carlo

simulation selectivity on those regions of the state space where loss of load states are

more likely to occur. These regions are isolated by performing state decomposition to

remove coherent acceptable subspaces. It has been shown that this method results in a

significant reduction in the number of sampled states, thereby reducing the

computational effort required to compute the system and bus indices.

  A novel approach for power system reliability evaluation combining Monte Carlo

simulation and learning vector quantization (LVQ) of Neural Networks has been

introduced in [13] . This new method greatly reduces the computing burden of the loss

of load probability calculation compared to Monte Carlo simulation only.

  A probabilistic method, designated as system well-being analysis has been used for
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evaluating the effect of peak load, load factor, load curtailment philosophy and

percentage load curtailed on composite system reliability [14]. This approach

incorporates the conventional risk index as well as the accepted deterministic criteria

identified as being in the healthy and marginal states. It calculates the well-being indices

in generation and transmission systems.

II. Genetic Algorithms

A. Genetic Algorithm Construction

Genetic algorithm is one of the most powerful and broadly applicable stochastic

search and optimization technique based on concepts from evolution theory. It is a

technique that simulates the nature where a new generation is coming from old

generation with more fit properties. A genetic algorithm is a simulation of evolution

where the rule of survival of the fittest is applied to a population of individuals. Genetic

algorithm has been applied to a wide range of difficult optimization problems that are

relevant to engineering and operation research [15], [16], [17].

The GA has many advantages over other conventional optimization methods.

Some of these are:

1.GA works with a coding of solution set rather than solutions themselves.

2. It searches a population of solutions rather than a single solution.

3. It uses payoff information through fitness function, there is no need to get the

derivatives or other auxiliary knowledge for the function that is need to be optimized.

4. It uses probabilistic transition rules, not deterministic rules.

Suppose we have a function in a set of variables. We want to find the values of

these variables to maximize or minimize this function. When using GA to solve this

problem, a random initial population is first created. This population consists of a set of

individuals called chromosomes. Each chromosome consists of a certain number of

genes. Each chromosome represents a potential solution and it consists of a decoded set
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of variables that represents the original variables. Each original variable can be

represented by  a group of genes or a single gene. A fitness function is used to evaluate

the goodness of each chromosome. The fitness function is usually the objective function

that we  want to maximize or minimize.

The basic construction of a genetic algorithm is as follows:

1. Create an initial population, usually a randomly generated string of individuals.

2. Evaluate all the individuals by applying some function or formula usually called

a fitness function.

3. Select a new population from the old population based on the fitness of the

individuals as given by the evaluation function.

4. Apply some genetic operators such as mutation and crossover to the members of

the new population to create new solutions.

5. Evaluate these newly created individuals.

6. Repeat steps 3-5 applied on one generation until the termination criterion has

been satisfied. A commonly used criterion is to stop after a fixed number of generations.

B. Chromosome Representation

A chromosome is made of sequence of genes from a certain alphabet. An alphabet

may consists of  binary digits, floating point numbers, integers, symbols, i.e.,  A, B,

C,�. or  matrices. Each GA population consists of pop_size chromosomes.

C. Genetic Algorithm Operators

Genetic algorithm operators are applied to the old population to obtain a new

population with better solutions. There are many types of GA operators, the most

essential ones are crossover, mutation and selection.

1. Crossover operator

Crossover operates on two chromosomes at a time and generates offspring by

combing features of both chromosomes . There are many types of crossover operators.

Some of them can be applied to any type of decoded GA such as one point crossover and
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two point crossover. Others can be applied only to specific types of  GA such as

arithmetical crossover operator which can be applied only to real number encoded GA.

Some crossover operators can result in unfeasible solutions, others always result in

feasible solutions.

A crossover probability Pc is chosen at first. For each pair of chromosomes a

random number is drawn, if this number is less than or equals Pc, this pair of

chromosomes is subjected to crossover.

a) One point crossover operator

This is the most commonly used crossover operator. Suppose two chromosomes X

and Y are subjected to cross over. Each chromosome length is k. Generate a random

number �pos� in the range [1..k-1].  The genes of the new chromosomes will be:

                          xi
\ =  xi   if  i < pos   and  xi

\ =  yi    otherwise                                   (2.1)

                          yi
\ =  yi   if  i < pos   and  yi

\  =  xi  otherwise                                  (2.2)

where xi represents gene number i in the X chromosome and  yi represents gene number i

in the Y chromosome.

b) Two point crossover operator

Generate two random numbers �pos1� and �pos2� in the range [1..k-1].  Supposing

pos1<pos2, the genes of the new chromosomes will be:

                       xi
\ =  xi   if  pos1< i < pos1   and  xi

\ =  yi    otherwise                         (2.3)

                       yi
\ =  yi  if  pos1< i < pos2   and  yi

\ =  xi  otherwise                          (2.4)

c) Arithmetical crossover operator

Arithmetical genetic operators are used to produce children by applying them to

parents. The offspring (Y1 , Y2) for two parent chromosomes (X1 , X2) eligible for

crossover are:

Y1=λ1.X1 + λ2.X2                                                                               (2.5)

Y2=λ1.X2 + λ2.X1                                                                 (2.6)

If   λ1 + λ2 = 1 and  λ1 >0,  λ2 > 0, it will be called convex crossover. Each time

crossover will be applied, a random number between 0 and 1  will be picked as a value
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for λ1.

d) Direction-based crossover:

A single offspring X\  is generated from two parents X1 and X2. Each gene kx′   of

the offspring is produced form the parents corresponding genes according to the

following  rule:

kkkk xxxrx 221 ).( +−=′                                                    (2.7)

where 0 < r ≤ 1.

2. Mutation operator

The mutation operator produces spontaneous random changes in various

chromosomes. A mutation probability Pm is set at first. For each gene in the current

chromosomes a random number r will be drawn from [0..1]. If  r ≤ pm, this gene will be

subjected to mutation.

a) Uniform mutation

For each bit in each chromosome in the new population, generate a number r  from

[0..1]. If  r < pm   flip that bit  from 1 to zero or zero to one in case of binary

representation. In the case of real number representation, choose a random number for

the selected gene between the gene corresponding variable lower and upper bounds.

b) Non uniform mutation

For each gene in each chromosome in the population pick a random number

between 0 and 1. If this number is less than or equal to mutation probability then this

gene is eligible for mutation. For a given chromosome X, if one of its genes xk is

selected for mutation, the resulting offspring is:

X\ = [x1, x2 , �����, kx′ ,����������xn],

where kx′   is randomly selected from two possible choices:

),( k
U
kkk xxtx x −∆+=′  or                                      (2.8)

 ),( L
kkkk xxtxx −∆−=′                                           (2.9)

where U
Kx  and L

Kx  are the upper and lower bounds for xk.

The function ∆(t,n) returns a value in the range [0 , n ] such that the value of  ∆(t,n)
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approaches to 0 as t increases.
b

T

t
rnnt 






 −=∆ 1..),(                                              (2.10)

where t is the current generation number,

T is the maximum generation number,

r is a random number from [0..1],

b is a parameter determining the degree of non uniformity.

3. Selection operator

The selection operator directs the GA search toward a promising region in the

search space. In this process, new chromosomes are selected to construct the population

of the new generation from the sampling space. There are two types of the sampling

space. Regular sampling space which contains all offspring but just part of parents.

Enlarged sampling space which contains all parents and offspring. There are many

strategies for the selection process, two of them are explained in next sections.

a) Top selection

Assume that population size equals to pop_size and the number of offspring

produced after applying crossover and mutation operators equals to child_size. If the

optimization problem is a maximization problem, top selection means that the new

generation will consist of the highest fitness value chromosomes among the

chromosomes of  old population and offspring, i.e., new generation consists from the

best pop_size chromosomes chosen from the previous pop_size parents and child_size

children.

b) Roulette wheel selection

The fitness value is calculated for each chromosome in the current population.

Consequently,  the total fitness of the whole population is calculated.  The probability of

a selection for each chromosome is calculated as the ratio of chromosome fitness value

and the total fitness value.  The cumulative probability  qi  is calculated for each

chromosome i. The selection process is based on spinning the roulette wheel pop_size

times. Each time a single chromosome is selected for the new population. This is
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achieved by generating a random number r from the range [0..1].  If  r < q1  then select

the first chromosome, otherwise select the ith chromosome such that  qi-1 <  r    ≤ qi.

Through this selection schema, some chromosomes will be selected more than once. The

best chromosomes get more copies, the average stay even, and the worst die off.
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CHAPTER III

ADEQUACY  ASSESSMENT OF POWER SYSTEM GENERATION USING A

MODIFIED SIMPLE GENETIC ALGORITHM

I. Introduction

Many methods have been developed to calculate the adequacy of power system

generation.  These methods can be divided into two main categories: analytical methods

and simulation methods using Monte Carlo technique. The analytical methods are

further divided into two main categories: the discrete distribution methods and

continuous distribution methods. Genetic algorithms have shown a rapid growth of

applications in power systems. An area which has not yet been investigated for their

application is power system reliability. Application of genetic algorithms (GA) to power

systems is found in areas such as economic dispatch, power system planning, reactive

power allocation and the load flow problem. A list of papers of GA application to power

systems can be found in [18]. In all these applications GA is used primarily as an

optimization tool.

An innovative technique to calculate the full set of indices of power system

generation adequacy is presented in this chapter [19],[20],[21]. These indices are loss-of-

load expectation (LOLE), expected energy not supplied (EENS), loss-of-load frequency

(LOLF) and  loss of load duration (LOLD). The developed technique uses the GA as a

search tool to find the most probable system failure states. These states are stored in an

array during the search operation, and then this array is convoluted discretely with

hourly load values to find all the indices. The developed technique is based on the

simple genetic algorithm (SGA) [15] with some modification to be suitable for adequacy

assessment. The new algorithm is called a modified simple genetic algorithm (MSGA).

The developed method has been tested both on the standard IEEE RTS-79 system

consisting of 32 generation units and IEEE RTS-96 system consisting of 96 generation
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units. The results obtained have been compared with other methods such as Monte Carlo

simulation for accuracy and efficiency.

An interesting feature of this method is that the state array can be used to find the

contribution of system states and individual unit combinations to the probability of

system failure. This information can be helpful in determining the sensitivity of system

reliability to individual units and can be used for making system improvements.

II. Basis of the Proposed Method

The primary use of the GA is to find the optimal value of a certain function under

some constraints. A GA is a simulation of evolution where the rule of survival of the

fittest is applied to a population of individuals. In the basic GA [16], an initial population

is randomly created. Population individuals, called chromosomes, are then evaluated by

applying some function or formula. A new population is selected from the old one based

on the fitness value of the individuals. Some genetic operators are then applied to some

of the newly selected population to create the final new generation. The most commonly

used genetic operators are crossover and mutation. The process is repeated from one

generation to another until reaching a stopping criterion.

In the proposed method, GA is used as a sampling tool to construct the generating

system state array. Demand is modeled as hourly loads. A discrete convolution is

performed between power-generating states and load values to determine different

generation system adequacy indices. Every generation unit is assumed to have two

states, up and down. It has its own forced outage rate (FOR), failure rate λ and repair

rate µ. The probability of any unit down is equal to its FOR. The total number of states

for all possible combinations of �m� generating units in the system is

                                                        K= 2m                                                                                             (3.1)

The MSGA is used to truncate this state space into a small fraction of K. Population of

the MSGA consists of �pop_size� individuals, each called a chromosome. Binary

numbers are used to represent each chromosome. Each binary number represents a single
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unit in the generating system. Length of any chromosomes �L� equals the total number

of system generators. System generators are divided into groups. Each group consists of

�Li� units which are identical, i.e., have the same generation capacity, λ and µ. Each

chromosome is divided into �n� parts, each part consisting of adjacent binary numbers

representing identical units in the same group. In this manner any chromosome is

represented as shown in Fig. 1.

Part # 1 Part # 2 ��� Part # n

 g11  g12  g13 g14 g21g22g23 g24 g25 g26 ���.     gn1 gn2 gn3

1    0   1   1 1   1   1    0   1    0 ���... 0    1   0

Fig. 1. Chromosome representation for generation system.

It can be seen that each chromosome represents a system state. Each state �i� has

its own probability �PGi�, contribution to system failure frequency  �FGi,� generation

capacity �Capi� and total number of equivalent permutations �copyi.� At the beginning,

�pop_size� chromosomes are initialized by choosing random binary numbers for their

bits. Each chromosome is evaluated. The value of  evaluation function for any

chromosome equals state probability if state capacity is less than the maximum load or

equals a very small number otherwise. The data of each evaluated chromosome is stored

in state array. Each element in the array consists of five fields. The first one is itself an

array containing number of columns equal to the number of chromosome parts. Each

column contains the number of   generators in the up state in the corresponding part. The

remaining fields are the state probability, contribution to system failure frequency,

generation capacity and total number of permutations. The element of state array

representing the chromosome shown in Fig. 1 is shown in Fig. 2.
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Number of ones Pi FGi Capi MW Copyi

3 4 ���� 1
1

3
4

6
3

4 ....... CCC

Fig. 2. State array construction.

After evaluation of all population chromosomes, total fitness of the population is

calculated. A new population is generated through applying selection, crossover and

mutation operations on the old population. Through selection process, states with higher

probabilities appear again in the next generation. Crossover and mutation operations

produce new states. Before adding any new state to state array, a test is made to see if an

equivalent permutation for this state was added previously.  The test is done by

comparing the number of ones in each part of this state with those of all previously

saved states in state array. If the test is failed, i.e., there was no permutation of this state

saved before, the new state data are added to state array. New generations are produced

until reaching a stopping criterion. The main role of GA is to truncate state space by

tracing states that contribute most to failure at maximum load.

III. MSGA Algorithm Structure

A. Construction of Generation System State Array

The construction of the power generation system state array is summarized in the

following steps:

1. Each chromosome is divided into �n� parts. Each part consists of adjacent

binary numbers representing generating units of the same capacity and reliability
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parameters.

2. The length of part number i is Li, i.e.,

∑=
=

n

i
iLm

1
                                                            (3.2)

3. In  this way, each chromosome  represents a system state.

4. Input parameters are pop_size, crossover probability �Pc,� mutation probability

�Pm,� system yearly peak load �max_load� and reliability parameters (FOR, λ, µ) of

generation units. A threshold probability �tp� is set.

5. Construct the state array to save scanned states.

6. Initial population is generated randomly. For each bit (representing a generation

unit) in the chromosome, a random binary number (zero or 1) is chosen, i.e., m random

binary numbers for each chromosome. This process is repeated for all population

chromosomes.

7. For a state with a probability less than tp, its fitness is taken as its state

probability multiplied by a small number, e.g., 1e-5. This state is ignored and is not

added to state array. The algorithm proceeds to step 11.

8. Calculate state-generating capacity Capi

Capi = ∑
=

m

j
jj gb

1
.                                                      (3.3)

where bj is the value of the binary number representing generating unit j, and gj is its

generating capacity. If Capi ≥ max_load, then this state represents a success state. Hence,

its fitness �Fiti� equals a very small number, e.g. 1e-100. Proceed to step 11. If Capi <

max_load then continue to step 9.

9. This chromosome represents a failure state. Calculate the number of �ones� in

each part of the chromosome. Compare these numbers with the first field in state array.

If a state is found to have the same value of the �ones,� this means that this state has

been scanned previously. Leave the remaining of this step and go to step 10. Otherwise

this chromosome represents a new state. The fitness of any chromosome �i� representing

a new state is evaluated as follows:
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a. Calculate chromosome probability

Pi = ∏
=

m

j
jgp

1
                                                          (3.4)

where gpj  is generating unit state probability which can take one of the following values:

gpj = 1-FORj    if     bj  = 1   or    gpj = FORj          if     bj  = 0

b. Calculate the number of all possible permutations  of the evaluated state that

equals the multiplication of all  permutations of each part in the chromosome.

                                    copyi =          ..........
2

2

1

1
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where Oj  is the number of �ones� in part j of length Lj.

c. The fitness of the chromosome can be calculated as

                                                       Fiti = copyi . Pi                                                        (3.6)

d. The state contribution to system failure frequency is calculated using the

conditional probability method described in [22] and [23].

FGi =  Pi  . ( j

m

j
j

m

j
jj bb λµ .).1(

11
∑−∑ −
==

 )                                  (3.7)

e. Save all chromosome data in state array fields, and increase state array counter

by one.

f. Update the probability of loss of load for max load.

lolp(max load)new = lolp(max load)old + Fiti                                 (3.8)   

g. Skip step 10 and jump to step 11.

10. In this case, the chromosome represents a state, one of whose permutations was

stored previously. The fitness of this chromosome is calculated according to (3.6), using

state data previously stored in state array. This fitness value is multiplied by a small

number, e.g., 1e-5, to decrease its opportunity to appear in new generations.

11. Steps 7 to 10 are repeated for all chromosomes comprising this population.

When the last chromosome in the current population is reached, go to the next section to

produce a new generation.
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B. Evolution of a New Generation

Evolution of a new generation from the old one in SGA is described in detail in

[15] and [16]. The summary of the process is that old population passes through three

operations. The first one is the selection from parents; the second one is applying the

crossover operator; and the third one is applying the mutation operator. Selection

procedures are as follows:

1. Calculate the total fitness of the population

∑
=

=
sizepop

i
iFitF

_

1
                                                        (3.9)

2. Calculate the probability of a selection for each chromosome i.

F

Fit
ps i

i =                                                          (3.10)

3. Calculate the cumulative probability qi for each chromosome �i� by adding its

selection probability to those of all previous �i-1� chromosomes in the current

population.

∑
=

=
i

j
ji psq

1
                                                        (3.11)

4. The selection process is based on spinning the roulette wheel pop_siz times. A

single chromosome is selected for the new population each time.

5. Generate a random number r from the range [0..1]. If  r < q1  then select first

chromosome otherwise select the ith one such that   qi-1 <  r    ≤ qi.

6. In this manner, some chromosomes are selected more than once. The best

chromosomes get more copies; the average stay even; and the worst die off.

The second operation is to apply the crossover operator. For each pair of

chromosomes in the new population, generate a random number r  from [0..1]. If  r < Pc

select given chromosome pair for crossover. At the end, j pairs of chromosomes are

eligible to apply crossover to them. Assume the pair X and Y is subjected to crossover.

Generate a random number �pos� in the range [1..m-1]; the two new chromosome genes

are:
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xi
\ =  xi   if  i < pos   and  yi   otherwise   (for i = 1 to m)

yi
\ =  yi   if  i < pos   and  xi   otherwise   (for i = 1 to m)

An illustration for the crossover operation is shown in Fig. 3.

1 1 0 1 0 1 0 0 1

x1

X=

x2

Pos=3

x3 x4 x5 x6 x7 x8 x9

1 0 1 1 0 0 0 1 1

y1

Y=

y2 y3 y4 y5 y6 y7 y8 y9

1 1 0 1 0 0 0 1 1

x1

X\ =

x2 x3 y4 y5 y6 y7 y8 y9

1 0 1 1 0 0 0 1 1

y1

Y\ =

y2 y3 x4 x5 x6 x7 x8 x9

1 1 0

1 0 11 00

Fig. 3. Crossover of X and Y chromosomes.

The third operation is to apply the mutation operator. For each bit in each

chromosome in the new population, generate a random number r from [0..1]. If  r < Pm

convert that bit  from one to zero or zero to one.

Now a new population is generated, and the process is repeated until a stopping

criterion is reached. The main idea of the proposed method is that at each GA
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generation, more states are scanned, especially those with higher failure probabilities,

i.e., have higher fitness values. Each of them is saved in the state array. If dealing with

an ordinary optimization problem, the purpose is to obtain the maximum value of the

fitness function and the decoded decimal value for its chromosome. But here, GA is used

to scan or, in other words, to sample system states which have higher fitness values.

Illustration of GA search process is shown in Fig. 4.
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Initial
States

State with highest
failure probability

x
x

Region of high failure
probability states

A system
state

Region of high failure
probability states

Fig. 4. The GA searching the state space.

C.  Choosing a Stopping Criterion

Any of the following three criteria can be used to stop the algorithm:

The first stopping criterion is to stop the algorithm after reaching a certain number

of GA generations. If a small number of generations is used, this leads to inaccurate
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results, as not enough states would have been scanned.

The second one is to stop after the scanning of a certain number of system failure

states by adding all the numbers of the permutations in the state array. Taking into

consideration that only states resulting in failure at maximum load are stored, this

stopping criterion gives accurate results taking into consideration system size and the

difference between the installed generation capacity and system maximum load.

The third stopping criterion is to stop when the increase in the probability of

failure of supplying maximum load is below a certain value within certain number of

generations, i.e., max.{lolp(max_load)new -- lolp(max_load)old for certain consequent

number of generations} < certain value.

D. Calculating Reliability Indices

After the MSGA is stopped, using any of the previously mentioned stopping

criteria, it is time to calculate adequacy indices of the power-generating system. These

indices are LOLE, EENS, LOLF and LOLD.  These indices are calculated by discrete

convolution of hourly load values during a full year with the state array developed

previously. Consider the load value at hour �i� is LHi . Loss-of-load probability (LOLP)

for this load value is calculated as follows:

LOLP(LHi) =  ∑
=

ae

j
jjj copyPS

1
..                                           (3.12)

where �ae� is the total number of state array elements, and Sj  is the state status. It equals

one if it is a failure state, i.e., Capj  < LHi , or equals zero if it is a success state i.e. Capj  ≥

LHi.

After calculating LOLP for all load values, LOLE in hours per year is calculated

LOLE =  ∑
=

8760

1
)LH(LOLP

j
j                                                (3.13)

Power not supplied (PNS) in megawatts is calculated for each hourly load value LHi,

and consequently, expected energy not supplied in megawatts hour is calculated
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                PNS(LHi) = ∑ −
=

ae

j
jijjj PS

1
)CAPLH.(copy..                                (3.14)

EENS  = ∑
=

8760

1
)LH(PNS

j
j                                                  (3.15)

LOLF consists of two components: frequency of generating capacity �FG� and

frequency due to load changes �FL.� Each component is calculated separately as

follows:

LOLF(LHi) =  ∑
=

ae

j
jjj FGS

1
copy..                                     (3.16)

                                                 FG = ∑
=

8760

1
)LOLF(LH

j
j                                                (3.17)

FL = ∑ −
=

−
8760

2
1 ])LOLP(LH)LOLP(LH.[

j
jjjV                                    (3.18)

where Vj  equals zero if the value between bracts is -ve and equals �1� otherwise.

Now LOLF in occurrences per year is calculated

LOLF = FG + FL                                                      (3.19)

The last indices is the LOLD in hours is calculated:

LOLD = 
LOLF
LOLE                                                         (3.20)

Other data that can be collected from state array is the generation outage capacity

table. The advantage of this proposed method over other methods is that the obtained

outage capacity table is close to the exact capacity outage table without any round off.

This table is constructed from the state array by arranging the states in ascending order

according to their capacities. At first, subtract the smallest state capacity from the total

installed generating capacity. Save the corresponding outage capacity and state

probability as the first element of capacity outage table. Go to the next element of the

state array if the next state has the same capacity like the previous one; then, add its

probability to the previous element in the capacity outage table; otherwise subtract its

capacity from the total installed capacity, and save this new outage capacity as a new
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element in the table. Its corresponding probability is the summation of this state

probability and the probability of the previous elements in the capacity outage table.

These procedures are repeated until the last element of the state array. In this way, the

outage capacity table is obtained with the smallest outage representing approximately the

difference between total installed generation and maximum load. If the complete

capacity outage table is required then run the MSGA, taking the maximum load of value

higher than the installed capacity so that all the scanned states will be failure states and

will be saved in the state array.

Another advantage of the proposed method is that from the analysis of the state

array the following information can be obtained.

1. The scenario of the states that is likely to lead to system failure. This can be

done by taking a certain number of failure states with higher probabilities and

multiplying each state probability by the probability of the load to be higher than this

state capacity. Ordering the obtained values, the results give a picture of the most

probable scenarios of failures expected to occur. This scenario is described by the status

of generating units in this state given from the first field of the state array.

2. Another piece of information that can be derived is the contribution of different

generating unit combinations to system failure. This is helpful for improving reliability

of these units or trying to add more units in the system.

IV. Case Studies

The proposed method has been tested on the IEEE RTS-79 [24] and the larger

RTS-96 system [25]. The choice of population size, crossover probability, mutation

probability and threshold probability affects the accuracy of results. This is discussed in

section V.

A. Case I: IEEE RTS-79

The RTS-79 consists of 32 generating units with the smallest unit capacity of
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12MW and the largest unit capacity of 400MW. The total installed capacity is 3405MW.

The input parameters of the MSGA are taken as follows: pop_size = 40, Pc = 0.6, Pm =

0.06, max_load = 2850 MW and tp =1e-15. Results obtained in comparison with those

obtained by the traditional unit addition algorithm [5] are given in Table I.   The number

of yearly hours used is 8736 and not 8760 as indicated in previous equations since the

load data are given for only 364 days in the IEEE-RTS. The MSGA stops after

producing 750 GA generations. The total number of elements saved in the state array is

10428 states. The total number of their permutations is 1.91983*107.

Table I.  MSGA Results for RTS-79

Adequacy Indices Results
of   [5]

MSGA
results

Percentage error

LOLE  (hrs/year) 9.355 9.324 0.3%

EENS  (MWH) 1168 1163 0.43%

LOLF  (occ./year) 2.0197 2.0037 0.09%

The MSGA has two advantages over the Monte Carlo simulation method. The first is

that, like analytical methods, the state array construction is independent of system load

curve. Therefore, if adequacy indices are required to be calculated for different load

curves for the same system configuration, only the maximum of the set of each load

curve maximum value is needed. The MSGA uses this value for scanning system state

space, and the state array is constructed. State array is then convoluted with any load

curve, provided that its maximum load is less than the one used in construction of the

state array. In the case of Monte Carlo simulation, if results are required for different
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load curves, simulation must be done separately for each of them.

Table II(a)-(c), gives a comparison of the results obtained for different load curves

using Monte Carlo method [6], unit addition algorithm [5], and the MSGA method. The

state array is constructed with maximum load value of 3050 MW and then convoluted

with the four different load curves. It can be seen that MSGA gives results more accurate

than those of Monte Carlo in comparison to the unit addition algorithm, although they

are all close.

The second advantage of MSGA over Monte Carlo methods is that in case of

highly reliable systems where the FOR is very small, Monte Carlo simulation takes

excessive simulation time for reaching a well-converged solution. In contrast MSGA,

takes the same computational effort for more reliable systems, as the generation of new

failure states depends on the relative comparison of the state fitness value. It is also

possible to magnify the fitness value by multiplying it by a big number so that the

relative difference between states increases.

The computational effort for the proposed method is compared with Monte Carlo

simulation and the unit addition algorithm in Table III. The Monte Carlo simulation is

stopped when the coefficient of variation reaches 5%. As can be seen from Table III, the

MSGA is  faster than the Monte Carlo simulation. The computational effort compared

with the unit addition algorithm depends upon accuracy desired. The MSGA method,

however, can provide additional information (as discussed later), and like Monte Carlo

simulation is more flexible for dealing with complex system configurations like the

composite systems. The MSGA is, in fact, like Monte Carlo simulation with the search

process more directed by using a fitness function.

The Capacity outage table can also be obtained from the state array as described in

the previous section. Table IV shows a comparison between part of the obtained table

and  the capacity outage table given in [24]. The results in [24] are in increment of 20

MW.
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Table II. (a) LOLE Hours per Year  Comparison. (b) EENS Megawatts per Year
Comparison. (c) LOLF Occurrences per Year Comparison

Max. Load MW 2750 2850 2950 3050

Monte Carlo [6] 4.8516 9.3716 17.3696 30.7172

MSGA 4.8283 9.3435 17.461 31.0178

Unit add. Alg. 4.8454 9.355 17.499 31.0312

(a)

Max. Load MW 2750 2850 2950 3050

Monte Carlo [6] 586.49 1197.44 2335.73 4385.69

MSGA 558.58 1165.89 2310.1 4383.72

 Unit add. Alg. 561.8 1168 2311.5 4379.9

(b)

Max. Load MW 2750 2850 2950 3050

Monte Carlo [6] 1.0348 1.9192 3.4228 5.8652

    MSGA 1.0764 2.0090 3.6242 6.1908

 Unit add. Alg. 1.0843 2.0197 3.6346 6.1919

(c)
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Table III. Computational Time Comparison Between  MSGA , Unit Addition Algorithm
and  Sequential Monte Carlo Simulation

MSGA
Number of generations

Method  Monte
Carlo

Unit
addition

algorithm 100 250 500 750 1000
LOLE  hr/yr 9.541 9.355 7.343 8.165 8.744 9.324 9.354

Comp. time sec 372 50 8 21 59 177 245
error % 1.9% 0%   21%  12.7%    6.5%   0.3% 0.01%

 

Table IV. Part of the Capacity Outage Table

X out MW Exact [24] MSGA X out MW Exact [24] MSGA
1000 0.004341 0.00431 989 ---- 0.00519

999 ---- 0.00433 988 ---- 0.00520
998 ---- 0.00433 987 ---- 0.00530
997 ---- 0.00508 986 ---- 0.00530
996 ---- 0.00510 985 ---- 0.00530
995 ---- 0.00516 984 ---- 0.00530
994 ---- 0.00516 983 ---- 0.00531
993 ---- 0.00517 982 ---- 0.00532
992 ----- 0.00517 981 ----- 0.00540
991 ----- 0.00518 980 0.005433 0.00540
990 ----- 0.00519 979 ----- 0.00544

Even though the unit addition algorithm may be computationally more efficient

than MSGA depending on the accuracy desired, the MSGA has the ability of providing

additional useful information. It is possible to know the most probable failure scenarios

and their contribution to system adequacy indices. From the state array, the chromosome

shown in Fig. 5 has the highest  failure probability. If states are sorted according to their

total failure probabilities, the first five elements of the resulting array are shown in Table

V.
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Fig. 5. Highest  chromosome failure probability of RTS-79.

Table V. The Highest Failure Probability  Generating States

No. of ones Prob.
Pi

copyi Cap MW Total Prob.
Pi.copyi

4 4 3 2 5 1 6 4 1 0.0017 6 2808 0.0102
4 4 3 3 5 1 6 4 0 0.0028 2 2655 0.0056
3 4 3 3 5 1 6 3 1 0.00015 32 2830 0.0047
3 4 3 2 5 1 6 4 1 0.00019 24 2788 0.0045
4 4 3 3 5 0 6 4 1 0.0044 1 2605 0.0044

To see how this information can be utilized, consider first the state which has

maximum total probability P1 = 0.0102. The probability of the load to exceed this value

equals the number of hours load exceeds this value divided by 8736. P( LH > 2808 ) =

3/8736 = 0.00034341. The probability of this state to cause system failure is P1* P( LH >

2808 ) = 4.121e-6. So the contribution of this state to system failure is 4.121e-6 /

(9.39/8736) = 0.3834%, i.e., this scenario (failure of one 197MW unit & one 76MW

unit} contributes by this percent to system LOLP. Calculating the same value for the

remaining four states the contribution of each of them is 0.227%, 0.1018%, 0.2407% and

3.1395% respectively.

Additional information that can be derived is the generating unit combinations that
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contribute to system failure at a certain load level. For example, different unit

combinations contributing to failure at maximum load (2850MW) can be obtained. The

probability of failure to supply maximum load is 0.0835. If the contribution of the

different combinations of the two 400 MW units is needed, from the state array the

following results can be obtained:

States including success of the two 400 MW generators contribute 25.6% of failure

probability at maximum load. States including the failure of only one 400 MW unit

contribute 74.4% and those including two 400 MW failure have negligible contribution.

The contribution of different combinations of 20,76,100 and 197 MW units are given in

Table VI. Consider the entry corresponding to 1 unit failed under the unit capacity of 20

MW, it means that the contribution to failure probability by states in which there is one

failed 20 MW unit is 34.3%.

Another result that can be obtained is the generating unit combinations

contributing to system lole. for example failure of one of the 197MW units  appears

3.5313 hours from the total time of  LOLE ,i.e., its percentage contribution is 38%.  this

value is obtained by discrete convolution of state array and hourly load values adding

only states causing load loss with only one 197mw unit failed. Table VII shows

contribution of different generating units combinations in LOLE.

Previous analysis shows how state array generated by MSGA can be used to gain

more information about system states and different units contribution, and this is one of

the features of the proposed method.

B. Case II: IEEE RTS-96

The MSGA was also tested on IEEE RTS-96 [25] which consists of three

interconnected areas each of them identical to RTS-79. The total number of generating

units is 96. The total installed capacity is 10215 MW. It is assumed that each single area

has a maximum load of 3000 MW, i.e., the system maximum load is 9000 MW. This

gives a system percentage reserve of 13.5%. The input parameters of the MSGA are

taken as follows: pop_size= 200 , Pc=0.6, Pm=0.02 and tp=1e-20. The algorithm stops
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after 2000 GA generations. Results obtained by MSGA in comparison with those

obtained by unit addition algorithm are given in Table VIII.

Table VI. Contribution of  Different Generating Units Combinations to Failure
Probability at Maximum Load

Units Capacity in  MWNo. of
Failed units 20 76 100 197 12

0 60.4% 89.62% 84.15% 54.35% 89.83%
1 34.3% 10.28% 14.88% 43.05% 10.54%
2 5.28% 0.454% 0.9671% 2.598% 0.3976%
3 0.0341% 0.0021% 0.0027% 0.029% 0.0047%
4 0.0016% ≅ 0% -------- --------- ≅ 0%
5 -------- --------- ---------- --------- ≅ 0%

Table VII. Contribution of  Different Generating Units Combinations to LOLE

Units Capacity in  MWNo. of
Failed units 20 76 100 197 12

0 61.7% 87.81% 78.61% 54.80% 90.23%
1 32.05% 12.14 20.01 38.32 9.9%
2 5.76% 0.574% 1.36% 6.87% 0.385%
3 0.300% 0.0066% 0.008% 0.27% 0.0046%
4 0.0013% ≅ 0% -------- --------- ≅ 0%
5 -------- --------- --------- --------- ≅ 0%
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Table VIII. MSGA Results for RTS-96 after Evolving 2000 GA Generations

Adequacy Indices Unit addition
algorithm

MSGA Percentage error

LOLE  (hrs/year) 1.1402 1.1139 2.3%
EENS  (MWh) 229 220.5 3.7%

LOLF  (occ./year) 0.3977 0.3867 2.8%

V. Analysis of the Method

A. Effect of GA Parameters

In all the applications of GA, a suitable choice of (pop_size, Pc, Pm) is important to

obtain accurate results. Many sample runs on RTS-79 were done to study the effect of

different parameter values. MSGA was analyzed by fixing all parameters and changing

only one of them to study its effect. Analysis of results shows that MSGA is not strongly

dependent on pop_size or Pc but is affected by Pm. Low values of Pm give high error, due

to reaching premature failure state probabilities and sticking with them and decreasing

the probability of generating new states. At the same time, higher values of Pm increase

errors, as this converts the search process into a random search.

It has been found that 85% accuracy can be obtained in a small number of GA

generations.  To increase this accuracy, more than double the number of GA generations

is needed.  This is due to the efficiency of the genetic algorithm in optimization, as the

maximum state probability can be reached in a relatively small number of generations.

New stored states then result mainly from mutation process. This has been overcome by

penalizing the fitness function value of states that has been stored in the state array

previously, and they reappear in new generations. This forces GA to search for new

states.
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The computational effort for this method depends on software used, i.e.,

algorithmic implementation and hardware configuration for the system used. It also

depends on the stopping criteria used, i.e., number of states required to be scanned or

number of generations. The time burden in this method is the search process for each

chromosome to check if the state it represents or one of its permutations has been

scanned previously or not. This problem can be overcome using parallel operation as

described later.

B. Selecting MSGA Parameters

This section suggests a way for choosing GA parameters for a certain system. It

begins by choosing any set of parameters. It is recommended for Pm to be in the range of

0.005 to 0.08. Pm should decrease as the system gets larger. Pc can be in the range form

0.1 to 0.9. Pop_size should be higher than the total number of generating units. Set the

maximum load to a value slightly higher than the total installed capacity. This means all

scanned states are failure states and probability of failure of such a load is 1. Run MSGA

and note LOLP value. If it is increasing rapidly towards 0.9 this means these parameters

are suitable. Otherwise change one of the parameters and repeat the process.  The

threshold probability should decrease as the system size increases. Parameter tuning is

needed to be done just once for each system depending on its size.

C. Parallel Operation of  MSGA

For large systems, the number of states needed to be saved in the state array makes

the search process in the state array  a burden on the computational effort. This problem

can be solved by using parallel or distributed computation methods. MSGA can be

preformed on different machines at the same time saving only a small portion of the state

space on each machine. Each portion is not overlapping with other portions. Hence, each

MSGA searches only its state array, which has smaller number of stored elements. The

non-overlapping parts can be based on states portability or load outage level. In the first

case, MSGA runs on the first machine storing states having probabilities in the range
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from 1 to higher than 1e-10 for example, on the second machine probabilities ranging

from 1e-10 to 1e-15 are scanned and so on. Then all saved states are combined together

in one state array and then convoluted with load curve to obtain adequacy indices. It is

also possible to make the parallel operation based on load level e.g. states causing failure

at load level 10% to 50% of maximum load are scanned on one machine, states

contributing to failure at load higher than 50% and less than or equal to 60% of system

maximum load are scanned on another machine and so one. On each machine a modified

fitness function is used to search for the highest probable states in its range. An

illustration of this idea is shown in Fig. 6.
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Fig. 6. Dividing the state space through GA parallel sampling.
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D. Summary of Advantages

Advantages of the proposed method as compared with the traditional methods

have been indicated in the text and are summarized below:

1. Because of the inherent property of GA algorithms to search for optimal

solutions, the proposed method can yield information on the most probable failure

scenarios and their contribution to the system adequacy indices. Such information can be

helpful in the sensitivity analysis and provide additional information to system operators

and planners for reliability improvement and this is illustrated in Section IV using case

studies.

2. The method can also give generating unit combinations contributing to system

failure at a given load level. This is also illustrated in Section IV using case studies.

3. Additionally, the directed-search property of GA can be used in another fashion.

Suppose the effect of a certain group of generators on system adequacy is required to be

evaluated. This can be studied through GA fitness function by giving credits to states

including the failure of units under consideration and disregarding other states from

addition to state array. In this manner GA finds the most probable states satisfying the

required search criterion.

4. The parallel or distributed computation can be achieved simply using

partitioning based on the probabilities or load levels.

5. Compared with the Monte Carlo simulation, the computation time is not

significantly effected depending on the reliability of the system. In Monte Carlo, the

computation time increases with the increase in the reliability of the system.

VI. Conclusions

This chapter has presented a new method to calculate generation system adequacy

indices. The proposed method is based on a simple genetic algorithm that searches the

state space to scan most probable failure states and stores them in a state array. The GA

search process is guided through its fitness function. Hourly load values are then
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discretely convoluted with state array to obtain various adequacy indices of generating

system. Advantages and disadvantages of the proposed method in comparison with other

conventional methods were shown. The developed method has been tested on IEEE

RTS-79 and RTS-96. It has been demonstrated how the state array can be used to get

information about contribution of system states and different generating units

combinations to system failure, which is helpful for decision making.
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CHAPTER IV

A NEW METHOD FOR COMPOSITE SYSTEM ANNUALIZED RELIABILITY

INDICES BASED ON GENETIC ALGORITHMS

I.  Introduction

Reliability analysis of large power networks when generation and transmission are

considered together is a complex and computationally difficult problem. There are two

basic approaches for evaluating adequacy indices of composite power systems. The first

approach is based on analytical evaluation. The second is based on Monte Carlo

simulation techniques of either random sampling or sequential sampling. Monte Carlo

simulation based methods show promise because of their ability to represent complex

system configurations. The main difficulty in analytical techniques is the burden to trace

the numerous system states. The analytical methods try to overcome this by pruning the

huge state space. This can be achieved by state  ranking or limiting state evaluation to a

certain level of component outages.

In chapter III, GA was used as a powerful search tool to truncate the huge state

space and trace most probable failure states to find generation system adequacy. Their

success in generation system state sampling was a motivation to modify this technique to

be used for the assessment of composite system adequacy indices.

This chapter presents an innovative state sampling method based on GA to

truncate the huge state space by tracing failure states, i.e., states which result in load

curtailment. States with failure probability higher than a threshold minimum value will

be scanned and saved in a state array. The key to the success of the proposed method is

the appropriate choice of a GA fitness function, a scaling method for fitness function and

GA operators.  Each scanned state will be evaluated through a linearized optimization

load flow model to determine if a load curtailment is necessary. Load value at each bus

will be treated as fixed and equal to its maximum yearly value so that annualized
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adequacy system indices can be assessed. The proposed method is validated through its

application to RBTS test system [26]. Results are compared with those of different

Monte Carlo techniques. The proposed method is superior to the conventional Monte

Carlo method because of its ability for intelligent search through its fitness function. In

addition, it reports the most common failure scenarios and severity of different scanned

states [27].

II. Genetic Algorithms Approach

A genetic algorithm is a simulation of evolution where the rule of survival of the

fittest is applied to a population of individuals. In the basic genetic algorithm [15]-[17]

an initial population is randomly created from a certain number of individuals called as

chromosomes. All of the individuals are evaluated using a certain fitness function. A

new population is selected from the old population based on the fitness of the

individuals. Some genetic operators, e.g., mutation and crossover are applied to

members of the population to create new individuals. Newly selected and created

individuals are again evaluated to produce a new generation and so on until the

termination criterion has been satisfied.

The proposed method can be divided into two main parts. First GA searches

intelligently for failure states through its fitness function using the linear programming

module to determine if a load curtailment is needed for each sampled state. Sampled

state data are then saved in state array. After the search process stops, the second step

begins by using all  of the saved states data to calculate the annualized indices for the

whole system and at each load bus. Each power generation unit and transmission line  is

assumed to have two states, up and down. The probability of any generation unit to be

down is  equal to its forced outage rate "FOR". The failure probability of any

transmission line �i�  is �PTi,� which is calculated from its failure rate �λi� and repair

rate �µi� as follows:
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PTi = 
µλ

λ

ii

i

+
                                                   (4.1)

The total number of states �Nstates� for all  possible combinations of generating units and

transmission lines installed is:

Nstates =  2 ng + nt                                                        (4.2)

where �ng� is the total number of generation units and �nt� is the total number of

transmission lines in the system. GA is used to search for failure states and save such

states in the state array. This is achieved by making each chromosome represent a

system state. Each chromosome consists of binary number  genes. Each gene represents

a  system component. The first �ng� genes in the chromosome represent generation units

while the remaining �nt� genes represent transmission lines. If any gene takes a zero

value this means that the component it represents is in the down state and if it takes a

one value that means its component is in the up state. To illustrate the chromosome

construction, consider the small RBTS test system [26] shown in Fig. 7.  It consists of 2

generator (PV) buses, 4 load (PQ) buses, 9 transmission lines and 11 generating units.

Consider the state that all system components are up, the chromosome representing this

state is shown in Fig. 8.

Each chromosome is evaluated through an evaluation function. The suitable choice

for the evaluation function can add the required intelligence to GA state sampling. Many

evaluation functions can be used. The simplest one returns zero, if it is a success state

and the state probability if it is a failure state. The evaluation function then calls a linear

programming optimization load flow model that returns the amount of load curtailment

to satisfy power system constraints. If there is no load curtailment, the chromosome

represents a success state otherwise, it represents a failure state. The fitness value for

each chromosome will be the resultant value after linearized scaling of the evaluation

function value. Scaling of the evaluation function enhances the performance of GA since

it results in more diversity in the chromosomes of the new generations. After calculating

the fitness value of all chromosomes in the current population, GA operators are applied

to  evolve  a  new  generation.  These  operators  are  selection   schema,  cross  over  and
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mutation. There are many types of  such operators  and the ones used are explained later.

For  each  chromosome  produced  with a state probability  higher than  a threshold

value, the binary number it represents will be converted to its equivalent decimal

number. A search for this number in the state array is performed and if such a number is

found it means this state has been previously sampled and is not added again. There is

also no need to call the linear programming module for this state as the load curtailment

value for this state has been calculated and saved previously in state array. If the decimal

number representing a state is not found in the state array, the linear programming

module is then called to determine the load curtailment amount for the whole system and

for each load bus, if necessary. All calculated data are saved in the state array. New

generations are produced until reaching a stopping criterion. The main role of GA is to

truncate state space searching for states that contribute most to system failure. The next

phase is to calculate the full set of annualized adequacy indices for the whole system and

for each load bus. This is achieved via the use of data stored in the state array.

III. Algorithmic Structure

A. Construction of System State Array

GA searches for failure states and saves sampled states with all their related data in

the state array. This process  can be summarized in the following steps:

1.Each chromosome represents a system state. The first �ng� binary genes

represent generation units in the system. The last �nt� binary genes represent

transmission lines.

2.Intial population is generated randomly. For each bit  in the chromosome, a

random binary number (0 or 1) is chosen, i.e.,  �ng+nt� random binary numbers for each

chromosome. This process is repeated for all population chromosomes.

3.The state probability �SPj� for each chromosome �j� is calculated.

∏ ∏
= =

=
ng

i

nt

i
iij TGSP

1 1
.                                                           (4.3)
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where Gi=1-FORi if its gene =1 (up state) or Gi =FORi if its gene =0 (down state), and

Ti=1-PTi  if its gene = 1 or Ti = PTi  if  its gene = 0.

4.A threshold probability value is set depending on the required accuracy. If the

state probability calculated in step 3 is less than the threshold value this state is ignored

and linear programming module is not called.

5.If the state probability is higher than the threshold value the binary number

representing this state is converted into the equivalent decimal number. A search is

carried out in the state array to find if this decimal number has been saved previously. If

the equivalent decimal number is found, this means that this state has been scanned and

evaluated previously. Hence, its evaluation function value is retrieved and the algorithm

proceeds  to step 9 otherwise, it goes to next step.

6.The linear programming optimization module for calculating load curtailment is

called to evaluate the  new state. The amount of load curtailment ,if necessary to satisfy

system constraints, for the whole system and for each load bus is obtained and saved in

the state array. The state equivalent decimal number is also saved in the state array to

prevent any state from being added to the state  array more than once.

7.State contribution to system failure frequency is calculated using the conditional

probability  approach [22], [23] and the resultant value is also saved in the state array.

 ].).1[(.
1

ii

ntng

i
iijj bbSPFS λµ −−= ∑

+

=
                                      (4.4)

where FSj  is state �j� contribution to system failure frequency, and bi is  the binary value

of gene number �i� representing a generator unit or transmission line.

8.Expected Power not supplied �EPNS� for the new state is calculated and the

result is saved in the state array.

EPNSj = LCj . SPj                                                                          (4.5)

where LCj  is the amount of load curtailment for the whole system calculated in step 6.

9.The chromosome is evaluated. Many evaluation functions can be used. Two of

them are explained here. The first considers the state failure probability.
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where �new chromosome� means it has not been previously saved in the state array, �old

chromosome� means it has been found in the state array and α is a very small number,

e.g., 10-30 to decrease the probability of success states to appear in next generations.

The second evaluation function considers the severity of the failure state which is

presented by EPNS.

 
                                          schromosomeother  allfor                       

state failurea  represents j chromosome oldor new  if     



 +

=
β

βj
j

EPNS
eval              (4.7)

where β is a very small number, e.g., 10-20 to prevent obtaining a zero value for the

evaluation function.

The first evaluation function guides GA to search for states with higher failure

probabilities. The second evaluation function guides GA to search for more severe states

that have high value of failure probability multiplied by the associated load curtailment.

10.The fitness of any chromosome �j� is calculated by linearly scaling its

evaluation function value.

fitnessj = A . evalj + C                                              (4.8)

where A and C are fixed constant numbers. Scaling has the advantage of maintaining a

reasonable difference between fitness values of different chromosomes. It also enhances

the effectiveness of the search by preventing an earlier super-chromosome from

dominating other chromosomes which decreases the probability of obtaining new more

powerful chromosomes [17].

11.Repeat previous steps to calculate fitness value for all chromosomes in current

population.

12.Apply GA operators to evolve  a new population. These operators are selection,

crossover and mutation. The suitable choice for the appropriate types of operators

enhances the search performance of GA.
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13.The evolution process is continued from one generation to another until a

prespecified stopping criterion is reached.

14.Data saved in the state array are then used to calculate the full set of adequacy

indices for the whole system and at each load bus.

Some of the previous steps are  explained in more detail in the next subsections.

B. Evolution of a New Generation

In the evolution of a new population from the old one in the simple GA, old

population passes through three operations.

The first one, is the selection from parents. There are many types of selection

operators like roulette wheel selection, ranked selection and tournament selection. The

three types have been tested and tournament selection has been chosen as it improves the

search process more than the other types. Tournament selection can be explained briefly

as follows [17]:

A set of chromosomes is randomly chosen. The chromosome that has the best fitness

value, the highest in the proposed algorithm, is chosen for reproduction. Binary

tournament is used in which the chosen set consists of two chromosomes. The

probability of choosing any chromosome in the selected set is proportional to its fitness

value relative to the whole population fitness value. Consider population size of GA is

equal to pop_size chromosomes. Binary tournament selection is repeated pop_size times,

i.e., until obtaining a new population.

The second step is to apply the crossover operator on the selected chromosomes.

Single point cross over is used with cross over probability of Pc. For each pair of

chromosomes in the new population generate a random number r  from [0,1]. If  r < Pc

select given chromosome pair for crossover. At the end j pairs of chromosomes are

eligible to apply crossover to them . Assume the pair X and Y  is subjected to crossover.

Generate a random number �pos� in the range [1,ng+nt-1], the new two chromosomes

genes are:

xi` =  xi   if  i < pos   and  yi   otherwise   (for i=1 to ng+nt)
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yi` =  yi   if  i < pos   and  xi   otherwise   (for i=1 to ng+nt)

The third step is to apply the mutation operator. Uniform mutation with probability

of Pm is used. For each gene in each chromosome in the newly created population after

applying the previous two operators, generate a random number r  from [0,1]. If  r < Pm

convert that gene  from one to zero or zero to one. Now a new population has been

generated and the process is repeated until a stopping criterion is reached.

C. Stopping Criterion

Any of the following three criteria can be used to stop the algorithm:

i. The first stopping criterion is to stop the algorithm after reaching a certain

number of generations. If a small number of generations has been used this will lead to

inaccurate results as not enough states would have been sampled.

ii. The second one is to stop when the number of new states that has been added to

state array is less than a specified value within certain number of GA generations.

iii. The third stopping criterion is by updating the value of system Loss of Load

Probability �LOLP� for  each new failure state  added to the state array. The algorithm

will stop when the change of LOLP is below a specified value within certain number of

GA generations.

D. State Evaluation Model

State evaluation is a very important stage in composite power system reliability

assessment. Through this stage the current system state is evaluated as a failure or

success state. If it is a failure state the amount of load curtailment for the whole system

and the share of each load bus in this amount is determined. These values are needed to

calculate this state contribution in adequacy indices for the whole system and for load

buses. Each state is evaluated using a linear programming optimization model based on

dc load flow equations [8], [9]. For the current state to be evaluated, the elements of the

power system susceptance matrix B are modified according to transmission line outages.

The amount of available real power generation at each PV bus is also updated according
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to the  status of generation units installed at such a bus. The objective of this

optimization problem is to minimize the total load curtailment for the whole system

which is equivalent to maximizing the load value at each load bus. This objective is

subject to the following constraints:

i. Real power balance at each system bus.

ii. Real power flow limits on each transmission line.

iii. Maximum amount of load  curtailed at each load bus.

iv. Maximum and minimum available real power at each PV bus.

For the same optimal solution it is possible to have many scenarios of load

curtailment at each bus. A load curtailment philosophy should be used, otherwise

adequacy indices of load buses may be meaningless. In this work, importance of load is

taken into consideration as a load curtailment philosophy as given in [9]. Each load is

divided into three parts, i.e., three variables in the objective function. Weights are given

for each part in the objective according to the relative importance for each bus in

comparison with the remaining buses. Weights are also adjusted so that the first part of

each load is the least important and the third part is the most important. In this manner

load is  curtailed from the first part at each load  in the order of their importance, then

from second and third parts sequentially, if it is possible without violating any constraint.

The linear programming maximization problem is formulated as follows:
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         maxmin iii PGPGPG ≤≤                ∀  i=1,2,��.,nv                                      (4.14)

where:

n    is the total number of system buses,

nt   is the total number of the system transmission lines,

nl   is the total number of buses that have installed load,

nv  is the total number of buses that have installed generation,

Bij is the element at the ith row and jth column in the system susceptance matrix,

θi is the  voltage angle at bus i (bus 1 is assumed the reference bus with θ1 = 0),

PDi  is the yearly maximum load demand at bus i,

Xip is the value of part p of load installed at bus i,

Wip  is the relative weight of part p of  load installed at bus i, these weights are chosen

so that W1i  ≤ W2i ≤ W3i ,

Cip  is the percentage of part p of load installed at bus i to total load demand at the same

bus,

PGi is the real power generation at bus i,

PGi max is the maximum available generation at bus i, and

PGi min is the minimum available generation at bus i.

The variables vector that is calculated by the linear programming solver is {Xip, PGj, θk}

∀p=1,2,3, ∀i =1,2,� nl,∀j=1,2,�..nv  and ∀k=2,3,�.,n

The optimization problem is solved using the dual simplex method. The total amount of

system load curtailment �LCs� is:
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The load curtailment at load bus i   �LCi�  is

∑−=
=

3

1p
ipii XPDLC                                             (4.16)
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E. Assessment of Composite System Adequacy Indices

Annualized adequacy indices for the whole system and for each load bus are

calculated using the data saved in the state array.  These indices are, Loss of Load

Probability (LOLP), Loss of Load Expectation (LOLE), Expected Power Not Supplied

(EPNS), Expected Energy Not Supplied (EENS), Loss of Load Frequency (LOLF) and

Loss of Load Duration (LOLD). These indices are calculated considering only saved

failure states and ignoring success ones. Let the total number of saved failure states to be

�nf�, then the adequacy indices for the whole system are calculated as follows:

                                                       LOLP =  ∑
=

nf

j
jSP

1
                                                    (4.17)

LOLF =  ∑
=

nf

j
jFS

1
                                               (4.18)

EPNS = ∑
=

nf

j
jEPNS

1
                                            (4.19)

  LOLE = LOLP . 8760                                           (4.20)

LOLD = 
LOLF
LOLE

                                                  (4.21)

EENS = EPNS . 8760                                            (4.22)

The same set of indices can be calculated for each load bus considering only

failure states resulting in load curtailment at this bus and ignoring all other states.

IV. Case Study

The proposed algorithm has been implemented through C++ programming

language. A C++ library of GA objects called GAlib developed by [28] has been

integrated into the implementation. The proposed method has been tested on the RBTS

[26] test system. Total number of hours in one year is considered to be 8736 instead of

8760 as only these numbers of hours are given in the RBTS load curve. The input

parameters of the GA are taken as follows: pop_size = 40, Pc = 0.7, and Pm=0.05. The
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stopping criterion used is 1000 GA generations. Linear scaling, tournament selection,

one point crossover, uniform mutation, and the first evaluation function given in (4.6)

are used. Calculated system annualized indices with threshold probability value of 1e-8

compared with results reported in [29] using different Monte Carlo methods techniques

are given in Table IX.

Table IX. Annualized Adequacy Indices Comparison between GA Sampling and
Different Monte Carlo Sampling Techniques

Adequacy Indices GA
sampling

Sequential
sampling

[29]

State
Transition
Sampling

[29]

State
Sampling

[29]

LOLP 0.009753 0.00989 0.00985 0.01014
EENS (MWh/Yr) 1047.78 1081.01 1091.46 1082.63
LOLF (occ./Yr) 4.15097 4.13 4.14 5.21
LOLE (hr/Yr) 85.198 86.399 86.0496 88.58
PNS (MW/Yr) 0.119938 0.12374 0.12494 0.12393

LOLD (hr) 20.5249 20.9198 20.7849 17.0019

It can be shown from the comparison of results that the proposed method gives

similar results to those obtained using different Monte Carlo techniques. The best match

is with sequential Monte Carlo Method. The slight differences between the results are

due to the fact that all these methods are approximation methods. The accuracy of Monte

Carlo methods depends on how low the variance has been reached. The accuracy of the

proposed method will depend on the fixed threshold failure probability value and the

total number of sampled and saved failure states. The total number of states that GA has

sampled and has saved in the state array is 2198 states from which 1449 states result in

load curtailment, i.e., 66% of saved states are failure states.  It can be seen that GA

truncated the huge states space of the 20 components in the system which is larger than 1
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million states into a very small fraction of it.

The failure state with the highest probability is represented by the chromosome

shown in Fig. 9, in which only line 9 is down and all other components are up. This

failure state probability is equal to 0.000906. If the severity of a certain contingency is

considered by EPNS, the second evaluation function given in (4.7) can be used to

construct state array and find the most severe state. The most severe state is represented

by the chromosome given in Fig. 10, in which two generation units of 40MW capacity

installed at bus number one are in the down state and the reaming components are in the

up state. The total load curtailment for this state is 25 MW. The state failure probability

is 0.00075914. Hence, the EPNS for this state is 25*0.00075914 = 0.0189785.

1    1    1     1     1     1      1       1      0

L1 L2 L3 L4 L5 L6 L7 L8 L9

Transmission lines

1   1    1    1    1    1    1

Generation units
installed at bus #2

20
MW

20
MW

20
MW

20
MW

40
MW

1    1    1    1

Generation units
installed at bus #1
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MW
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MW

40
MW

20
MW

5
MW

5
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Fig. 9. Chromosome with the highest failure probability.
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Fig. 10. Chromosome represents the highest severe state.
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Annualized bus indices obtained using the load curtailment philosophy explained

previously are given in Table X.  These indices have been obtained by dividing each

load into three parts. The first and second parts range between 0 and 20% of the

maximum load at the corresponding bus. Meanwhile, third part ranges from 0 to 60% of

the same value. Hence curtailed load, if necessary, should be first obtained from the first

part of all loads then the second part and finally the third part. Weighting factors are

used to represent importance of each part. Load at bus 2 is considered to be the most

important and load at bus 6 is considered to be the least important. In this manner the

weighting factor for the first part of load at bus  2 is 5 and weighting factor for the first

part of load at bus  6 is 1. The biggest weighting factor is 15 which is associated with the

third part of load at bus 2.

It is possible to obtain totally different bus indices if bus importance order has

been changed, e.g., bus 6 is the most important and bus 2 is the least important. Results

in such a case are given in Table XI. Buses indices can also be varied if the maximum

limit of each load part has changed, e.g., if the ranges are 0.1, 0.4 and 0.5 instead of 0.2,

0.2 and  0.6.

V. Conclusions

This chapter presented an innovative method for composite power system

reliability evaluation. The proposed method uses GA as an intelligent search tool to

search for failure states that result in load curtailment. The performance of GA depends

on the suitable choice of the chromosome evaluation function. States sampled by GA

were saved with all their related data in a state array. After finishing the search process,

states saved in the state array were used to calculate the annualized adequacy indices for

the whole system and for load buses. A linear programming model was used to evaluate

each state taking into consideration loads importance. The proposed method was tested

on a small practical system. Results obtained were compared with those of different

Monte Carlo based techniques. Comparison showed that the proposed method gave

acceptable results. It was shown that the proposed method is superior over other
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conventional methods due to the intelligence it uses in its search process. Moreover, it

has the merits of reporting the most probable failure scenarios and most severe ones.

Table X. Annualized Adequacy Indices for Load Buses, Loads Importance from the
Most Important to the Least One Are 2,3,4,5,6

Adequacy
Indices

LOLP EENS
(MWh/Yr)

LOLF
(occ./year)

LOLD
(hr)

Bus#2 0.000229 7.373 0.1204 16.616
Bus#3 0.002382 202.133 0.9845 21.137
Bus #4 0.002624 177.847 1.1145 20.568
Bus#5 0.008614 153.547 3.1537 23.861
Bus#6 0.009753 506.707 4.1509 20.526

Table XI. Annualized Adequacy Indices for Load Buses, Loads Importance from the
Most Important to the Least One Are 6,5,4,3,2

Adequacy
Indices

LOLP EENS
(MWh/Yr)

LOLF
(occ./year)

LOLD
(hr)

Bus#2 0.008605 306.324 3.1372 23.963
Bus#3 0.008614 437.757 3.1549 23.854
Bus #4 0.002283 90.989 0.8626 23.1245
Bus#5 0.000275 8.776 0.1505 15.999
Bus#6 0.001371 206.580 1.1208 10.684
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CHAPTER V

USING GENETIC ALGORITHMS FOR COMPOSITE SYSTEM RELIABILITY

INDICES CONSIDERING CHRONOLOGICAL LOAD CURVES

I. Introduction

  There are two main types of composite system adequacy indices. The first set of

indices are called annualized adequacy indices in which the system maximum load only

is considered, i.e., load value at each load bus is fixed at its maximum yearly value. The

second set of indices are called annual adequacy indices in which the yearly

chronological load curve at each bus is considered. Each set of indices has its own

importance. Annualized indices are used to compare the reliability of two different

systems while annual indices is used for detecting system weak load points and as a

planing criterion.

Both random sampling and sequential Monte Carlo simulation can be used for the

assessment of composite system annual adequacy indices. Chronological load is

aggregated into a certain number of steps or represented by a certain number of clusters

when using Monte Carlo random sampling technique. On the other hand sequential

Monte Carlo simulation is able to represent different chronological load curves of load

buses on hourly basis, and hence it is the most suitable method for the assessment of

annual adequacy indices. However, this technique suffers from the extensive

computational effort it needs.

In chapter IV, GA has been used as a sampling tool to calculate composite system

annualized adequacy indices. In this approach GA truncates the huge state space by

tracing states which result in load curtailment. Sampled states with probability higher

than a threshold minimum value are evaluated through a linearized optimization load

flow model to determine if a load curtailment is necessary.  Evaluated state data are then

saved in a state array which is used later for calculating adequacy indices.
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This chapter presents a new technique in which the preceding approach has been

extended to consider the chronological load curve at each load bus. There are many

methods in the literature for representing the chronological load curve. The clustering

method using k-means technique is the most developed one and is used on the proposed

methods. Two different approaches based on GA are presented to calculate annual

adequacy indices [30]. In the first approach, GA samples failure states for each cluster

load vector separately and consequently adequacy indices for this load level are

calculated. Composite system annual indices are then obtained by adding adequacy

indices for each load level weighted by the probability of occurrence of its cluster load

vector. In the second approach, GA samples only failure states with load buses assigned

the values of maximum cluster load vector. Failure states are then reevaluated with

lower cluster load vectors until a success state is obtained or all load levels have been

evaluated.

Chronological loads at different load buses usually have a certain degree of

correlation. Degree of correlation depends on the type of installed loads, i.e., residential,

commercial, or industrial loads. It also depends on the regional time difference between

load buses due to their geographical location. The two developed approaches have been

applied to the RBTS test system [26]. A comparison between results of the two different

approaches is given. Both fully and partially correlated chronological load curves have

been considered.

II. State Sampling Using GA for a Single Load Level

The GA approach presented in chapter IV is summarized in this section. It is

divided into two main parts. First GA searches intelligently for failure states using its

fitness function. The fitness function uses a linear programming module to evaluate if a

sampled state represents a failure or a success state. The objective of the linear

programming module is to minimize load curtailment without violating system

constraints. Load at each load bus is considered fixed and equals to its yearly maximum

value. A sampled state represents a failure state when load is curtailed to prevent
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transmission line overloading and/or there is a deficiency in the available generation to

supply demand. Sampled state data are then saved in a state array. After the search

stops, the second step begins by using all  of the saved states  to calculate the annualized

indices for the whole system and at each load bus. These procedures are explained in

more detail  in the remaining part of this section.

Each power generating unit and transmission line is assumed to have two states, up

and down. The total number of network states �Nstates� for all  possible combinations of

generating units and transmission lines installed is:

Nstates = 2 ng + nt                                                      (5.1)

where �ng� is the total number of generating units and �nt� is the total number of

transmission lines in the system. GA is used to search for failure states and to save such

states in the state array. Each GA chromosome represents a system state. Each

chromosome consists of binary number genes. Each gene represents a system

component. The first �ng� genes in the chromosome represent generating units while the

remaining �nt� genes represent transmission lines. If any gene takes a zero value this

means that the component it represents is in the down state and if it takes a one value

that means its component is in the up state.

Each chromosome is evaluated through the fitness function. Fitness function calls

the state evaluation module only if the state probability is higher than a threshold value

and it represents a new state. New state means that it has not previously been included in

the state array. For each chromosome produced with a state probability higher than a

threshold value the binary number it represents is converted to its equivalent decimal

number. A search for this number in the state array is performed and if such a number is

found it means this chromosome represents an old state otherwise it represents a new

state.  State evaluation module determines if the chromosome represents a failure or

success state and the amount of load curtailment in case of failure state. Evaluated state

date, its decimal equivalent number  and the results of its evaluation are added to the

state array. In case of chromosomes representing old states their evaluation data is

retrieved from the state array and there is no need to reevaluate them. The suitable
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choice for the fitness function can add the required intelligence to GA state sampling.

One possible choice of the fitness function is given in (5.2).
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where SPj is the state probability, β is a small number in the range of 0.1 to 0.0001and α

is a very small number, i.e., 1e-20. In this manner the fitness value of old failure

chromosome is reduced to enable GA to search for more failure states and prevent that

failure state with higher probability to dominate other failure states. Fitness function is

scaled to enhance the performance of GA search process.

After calculating the fitness value of all chromosomes in the current population,

GA operators are applied to evolve a new generation. These operators are selection

schema, cross over and mutation. New GA generations are produced until reaching a

stopping criterion. A flowchart for GA sampling procedures is shown in Fig. 11. The

main role of GA is to truncate the state space by tracing states that contribute most to

system failure. After the search process stops, data saved in the state array is used to

calculate the full set of annualized adequacy indices for the whole system and for each

load bus.
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PSj  < Pthreshold

GA samples a new
network state j which
its probability is PSj

Calculate state fitness
value , do not evaluate

this state.

Has this state been
previously saved in the

state array?

Get state data from
states array.

Calculate the state
fitness function.

Yes

Yes

No

Has stopping
criterion been

satisfied?

Calculate adequacy indices using
the data saved in the state array.

Stop

Yes

No

Call  state evaluation module.
Calculate state fitness function.

Save state data in the state array.

No

Fig. 11. GA state sampling procedures for single load level.
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III. Modeling of Chronological Load Curve

System annual load is usually represented by system load at each hour in one year.

Many techniques have been used to represent system load in composite system

reliability. The most common one is to approximate load curve into certain number of

steps of load levels. Each load step has its probability of occurrence. A more efficient

model is based on clustering techniques [31]. This model has shown good results when

used for both generation system reliability [32] and multi-area reliability [33]. In this

chapter, clustering has been used to represent the system load curve. Load at each bus

has certain degree of correlation with load at other buses. When in a group of load

buses, each bus always has an hourly  load  with the same percentage of group maximum

load at this hour, these  loads are called fully correlated. Usually in real life there is

certain level of correlation between each group of fully correlated load buses. Consider

that load buses are divided into n groups, each group containing a set of fully correlated

buses. The vector of loads at certain hour i is:

).,,.........,........,,,( 321 LLLLLL i
n

i
r

iiii =                                         (5.3)

where Li
r  is the maximum load of group r at hour i and n is the number of load groups.

The 8760 load vectors are represented by m cluster vectors. Each cluster vector j is

represented as:
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jjjj CCCCCC =                              (5.4)

where j
rC is the cluster mean load value of group r in cluster j. Steps for applying the k-

means clustering technique to obtain m clusters with their associated probability are as

follows:

1. Choose initial values of cluster means. The following initial values are

suggested to be used. Initial cluster mean for group r at first cluster vector as
max1 98.0 rr LC = . For the second cluster vector max2 96.0 rr LC = . This process is repeated

for all cluster vectors so that the last cluster vector m has cluster means

 max).02.01( r
m
r LmC −=    ∀ r =1,2,��.,n                                 (5.5)
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where max
rL is the annual maximum load of group r. The 0.02 step is allowing  maximum

number of 50 clusters.

2. For each hour i calculate the Euclidean distance jiDIST − between its load vector

and cluster j load mean values vector

2

1
)( i

r
n

r

j
rji LCDIST −∑=

=
−                                               (5.6)

Repeat this process with all other cluster vectors. Load vector at hour i belongs to the

cluster with the least Euclidean distance form it.

3. In this manner load vector at each hour belongs to a certain cluster after

repeating step 2 for each of them.

4. For each cluster vector j calculate the new mean for each group r.
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and Tj is the total number of load vectors belonging to cluster j.

5. For each cluster vector calculate the Euclidean distance between old and new

means.
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  6. Repeat steps from 2 to 5 until  �changej�  is less than a prespecified limit for all

clusters.

 7. Calculate the probability of occurrence of each cluster vector.

8760
)( jj T

CP =                                                        (5.10)



63

IV. GA Sampling with m Cluster Load Vectors

When considering the annual load curve, the total number of system states

increases dramatically. Considering that the annual load curve is represented by m

cluster load vectors the total number of system states is:

Nstates =  m.2 ng + nt
                                                        (5.11)

Two different approaches have been developed to deal with the multiple load

vector levels. GA parallel sampling and GA sampling for maximum cluster load vector

with series state reevaluation. These two techniques are  explained in the next sections.

A. GA Parallel Sampling

In this approach GA samples system failure states with load at each bus fixed and

equal to one of the cluster load vectors. Adequacy indices are then calculated for this

fixed load level. This process is repeated for all cluster load vectors. The system annual

adequacy indices are calculated as follows:

∑=
=

m

i

i
i CPLOLPLOLP

1
)(.                                              (5.12)

∑=
=

m

i

i
i CPEENSEENS

1
)(.                                              (5.13)

where LOLPi and EENSi are loss of load probability and expected energy not supplied

calculated with cluster load vector i. This approach has the advantage of giving more

accurate results but has the disadvantage of the high computational effort required as the

search process is repeated m times. Parallel computation can be used  with this approach.

Failure states for each load level are sampled separately on different machines and in the

final step different load level indices are added together to obtain the annual adequacy

indices. An illustration for this method is shown in Fig. 12.
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Fig. 12. GA parallel sampling for each load state.
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B. GA Sampling for Maximum Cluster Load Vector with Series State Revaluation

In this approach GA searches for states which result in system failure while load

buses are assigned the maximum cluster load vector. These failure states are then

reevaluated   while  assigning  load   buses the   values  of other cluster load vectors  in a

descending order from the highest to the lowest cluster load vector. This series state

revaluation process stops when there is no load curtailment at a certain cluster load

vector, or it has been reevaluated with all cluster load vectors. Adequacy indices are

updated with each state evaluation process. An illustration for this method is shown in

Fig. 13.
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The main steps for this approach are:

1. Order cluster load vectors in a descending order according to the value of their

total load.  Consider cluster 1 has the highest rank and cluster m has the lowest rank. It is

assumed that:

m2,.......,j   , n1,2,.....,r    1 =∀=∀≤ −j
r

j
r CC                                (5.14)

2. Assign bus loads the  maximum cluster load vector 1C .

3. GA samples a new network state k (states of generators and transmission lines),

this state is evaluated using the assigned load values in step 2.

4. If the evaluated state represents a success state, i.e., there is no load curtailment,

ignore all the remaining cluster load vectors as it is guaranteed there is no load

curtailment with lower load values and jump to step 7. Otherwise, proceed to step 5.

5. If the evaluated state represents a failure state, i.e., there is load curtailment,

update the annual adequacy indices.

)(. 1CPSPLOLPLOLP koldnew +=                                      (5.15)

11).(. kkoldnew LCCPSPEPNSEPNS +=                                 (5.16)

where SPk is the probability of network state k, 1
kLC  is the amount of load curtailment

for the whole system with network state k and system loads assigned the values of

cluster load vector 1, and EPNS is the expected power not supplied.

6. Assign bus loads the lower cluster load vector 2C . Hence, a new system state

has been created that is formed from network state k and the new cluster load vector.

This new system state is evaluated. If it represents a success state the remaining cluster

load vectors are ignored and hence jump to step 7. Otherwise, it is a failure state,

adequacy indices are updated using (5.15) and (5.16) substituting cluster 1 date with

cluster 2 data.

A new system state is formed from state k and the next cluster load vector 3. This

process for network state k is repeated until encountering a system success state or

network state k has been evaluated considering all the m cluster load levels.
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7. If stopping criterion for GA sampling has been satisfied proceed to step 8.

Otherwise, return to step 3 for GA to sample a new network state.

8. Composite system annual adequacy indices are calculated:

newLOLPLOLP =                                                  (5.17)

8760.newEPNSEENS =                                           (5.18)

V. State   Evaluation Model

State evaluation depends on the power flow model used for this purpose.

Linearized state evaluation model is based on dc load flow equations. In each sampled

state one or more generators and/or transmission lines are in the down state.  For the

current state to be evaluated, elements of the power system susceptance matrix B are

modified according to transmission line outages. The amount of available real power

generation at each PV bus is also updated according to the status of generating units

installed at such a bus. Load values equal the corresponding cluster load vector. State

evaluation is represented as an optimization problem with the objective of minimizing

the total load curtailment for the whole system, which is equivalent to maximizing the

load value at each load bus. The linearized optimization model is formulated as follows

(the subscript that refers to the number of the current network state is omitted from all

equations):

∑
=

nl

i

z
iX

1
max                                                        (5.19)

Subject to:

    j
n

j
ij

z
ii BXPG θ.

2
∑=−
=

               ∀  i=1,2,��...n                    (5.20)

kjik PTy ≤− ).( θθ                         ∀  k=1,2,��..nt                  (5.21)

kijk PTy ≤− ).( θθ                         ∀  k=1,2,��..nt                  (5.22)

 k
i

k
i PDX ≤≤0                           ∀  i=1,2,��...nl                  (5.23)
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maxmin iii PGPGPG ≤≤              ∀  i=1,2,��...nv                 (5.24)

where:

n    is the total number of system buses,

nt   is the total number of the transmission lines,

nl   is the total number of load buses,

nv  is the total number of buses that has installed generation,

Bij is the element at the ith row and jth column in the system susceptance matrix,

θi is the  voltage angle at bus i (bus 1 is assumed the reference bus with θ1 = 0 ),

z
iPD  is the load demand at bus i corresponding to cluster z load vector,

z
iX  is the amount of load that could be supplied at  bus i while demand at load buses

assigned cluster z load vector,

PTk, yk are the maximum flow capacity and susceptance of transmission line k

connecting between bus i and bus j,

PGi is the real power generation at bus i,

PGi max is the maximum available generation at bus i and

PGi min is the minimum available generation at bus i.

This model can be solved using linear programming methods like the dual simplex

or interior point method. The variables vector to be calculated by the linear

programming solver is { z
iX , PGj, θr}

∀ i=1,2�.,nl   ,   ∀ j=1,2,�..nv  and ∀ r= 2,3,��n

The total amount of system load curtailment �LCs� is:

∑ ∑−=
= =

nl

i

nl

i

z
i

z
i

z XPDLC
1 1

                                                (5.25)

The load curtailment at load bus i   �LCi�  is

 z
i

z
ii XPDLC −=                                                       (5.26)
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VI. Case Studies

The proposed algorithm has been implemented through C++ programming

language. A C++ library of GA objects called GAlib developed by [28] has been

integrated into the implementation. The proposed method has been tested on the RBTS

test system  [26]. Studies have been made considering partially and fully correlated load

buses.

A. Fully Correlated Load Buses

Yearly load curve data in per unit of RBTS system maximum load (185 MW) are

given in [24].  The full correlation assumption means that all the system load buses

construct one load group, i.e., percentage of any load value at any load bus to system

maximum load is fixed throughout the year. Hence, each cluster load vector consists of

one element corresponding to system maximum load. Results of clustering the

chronological load curve into 8 and 15 points are given in Table XII. Comparison of

results when using different number of clusters while using GA sampling for maximum

cluster load vector with series state revaluation are given in Table XIII.

It can be shown from Table XIII that results obtained with 8 points  are

approximately equal those obtained using 30 points. Total number of evaluated system

states using 8 points is about 31% of those for 30 points. These results indicate that

clustering is an efficient way of representing the chronological load curve.

Comparison of results when using the two different GA sampling approaches,

explained previously, is given in Table XIV. In the first approach, GA  samples each of

the 8 cluster load values separately. In the second approach, GA samples failure states

for the maximum load value of 164.147 MW only with failure states reevaluated for

other load points in descending order until encountering a success state or considering all

load levels.

It can be seen from Table XIV that when GA is used for calculating adequacy

indices for each load separately and then combined, the results are more accurate but the
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computational burden is increased. This method is equivalent to Monte Carlo simulation

with random sampling in which states for each load level are sampled and evaluated

separately. When parallel operation is available it is possible to calculate adequacy

indices for each load level on a separate machine. When GA samples failure state for

maximum load value and reevaluate failure states only with other load levels in

descending order the total number of evaluated states is reduced significantly, about 27%

of those obtained when evaluating each load level separately.

Table XII. Results of Clustering the System Chronological Load Curve
Considering all Load Buses Belong to the Same Load Group

No. of Clusters
8 points

No. of Clusters
15 points

Cluster mean
value MW

Cluster
probability

Cluster mean
value MW

Cluster
probability

164.147 0.048191 174.294 0.007669
150.438 0.109661 164.213 0.025298
137.868 0.112523 156.763 0.041209
125.056 0.140682 150.531 0.053800
113.546 0.153159 144.263 0.059867
100.443 0.141369 137.356 0.061126
88.852 0.171932 129.915 0.074176
75.792 0.122482 122.864 0.086195

116.193 0.089286
109.506 0.077953
101.880 0.081273
94.599 0.100618
87.824 0.099359
79.961 0.089400
71.461 0.052770
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Table XIII. Comparison OF Annual Adequacy Indices and
Other Factors with Different Number of Clusters

No. of Clusters 8 points 15 points 30 points
LOLP 0.00127786 0.00125581 0.00125708

EENS (MWH/Yr) 132.0736 132.6160 132.6658
no. of failure states 2691 5670 13204

no. of sampled network states by GA 2206 2175 2195
no. of evaluated system states 4699 7648 15204

Table XIV. Annual Adequacy Indices Comparison Using Two Different GA Sampling
Approaches with Fully Correlated Load Buses

Sampling approach GA samples each
load level separately

GA samples
maximum load only

LOLP 0.00127768 0.00127786
EENS (MWH/Yr) 132.0568 132.0736
no. of failure states 2680 2691

no. of sampled network
states by GA

17210 2206

no. of evaluated states 17210 4699
LOLP 0.00000416 0.00000416Bus 2
EENS 0.1216 0.1216
LOLP 0.00001543 0.00001551Bus 3
EENS 1.3944 1.3984
LOLP 0.00003732 0.00003741Bus 4
EENS 1.738606 1.7431
LOLP 0.00013831 0.00013847Bus 5
EENS 1.8409 1.8448
LOLP 0.00127768 0.00127786Bus 6
EENS 126.9613 126.9660
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A comparison between annualized adequacy indices obtained in chapter IV

(EENS≅1048 MWh/Yr) and annual adequacy indices (EENS≅132 MWh/Yr) shows that

annual indices are much smaller than annualized indices. This is because annualized

indices are calculated assuming system hourly load values equal to system yearly

maximum load.

B. Partially Correlated Load Buses

System buses are assumed to be located in three different time zones. They are

divided into three groups with load buses in each group are fully correlated. Bus 2

belongs to the  first group, bus 3 belongs to the second group and buses 4,5,6 belong to

the third group. It is assumed that the bus loads of the third group have the  load curve

given in [24] as per unit of the group maximum load of 80 MW. Bus loads of the first

group have the same load curve as per unit of the group maximum load of 20MW but

shifted earlier by one hour. Bus loads of the third group have the same load curve as per

unit of the group maximum load of 85MW but shifted later by one hour. Load vector at

each hour consists of three elements. Using k-means clustering technique the 8736 load

vectors have been represented by 8 cluster load vectors given in Table XV. Calculated

annual adequacy indices are given in Table XVI.

Comparison between the results in Table XIV and Table XVI  shows that when

bus load correlation is considered, annual adequacy indices are decreased. This is

expected as each group peak load occurs at a different time and not simultaneously.
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Table XV. Results of Clustering the System Chronological Load Curves
Considering Load Buses Belong  to Three Different  Load Groups

Cluster Load Vectors
Group I Group II Group III

Cluster
probability

17.3652 74.8161 70.3534 0.0562042
15.9181 68.4577 64.3613 0.115614
14.4572 62.6707 58.9248 0.115614
13.1868 57.0087 53.5125 0.149954
12.2187 51.7321 48.6647 0.14549
10.9559 45.7813 43.2648 0.150298
9.77761 40.5867 38.2292 0.162775
8.42486 34.7781 32.8293 0.115614

Table XVI. Annual Adequacy Indices Comparison Using Two Different GA Sampling
Approaches with Partially Correlated Load Buses

GA sampling approach GA samples each
load level separately

GA samples
maximum load only

LOLP 0.001296928 0.001297081
EENS (MWH/Yr) 130.9428 130.9637

no. Of failure states 2661 2672
no. Of sampled

network states by GA
17161 2209

no. Of evaluated states 17161 4684
LOLP 0.00000449 0.00000450Bus 2
EENS 0.1046 0.1049
LOLP 0.00001682 0.00001695Bus 3
EENS 1.3724 1.3799
LOLP 0.00004039 0.00004052Bus 4
EENS 1.5402 1.5473
LOLP 0.00004530 0.00004542Bus 5
EENS 1.3868 1.3897
LOLP 0.00129693 0.00129708Bus 6
EENS 126.5388 126.5417
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VII.   Conclusions

This chapter has presented two new approaches for the assessment of annual

adequacy indices of composite power systems. The two methods are based on GA as a

sampling tool to search for failure states. In the first approach, GA samples failure states

for each load level separately. In the second approach, GA samples only failure states

with load buses assigned the values of maximum cluster load vector. Failure states are

then reevaluated with lower cluster load vectors until a success state is obtained or all

load levels have been evaluated. Bus chronological load curves have been represented

using k-means clustering technique. The two methods have been applied to the RBTS

test system. Results for fully and partially correlated load buses have been reported.

Results show that clustering technique gives a good approximation for the load curve.

Results also show that the second approach gives reasonably accurate results with much

less computational effort compared with the first approach. The first approach is

recommended to be used when it can be implemented on more than one machine

simultaneously.
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CHAPTER VI

ASSESSMENT OF THE ANNUAL FREQUENCY AND DURATION INDICES IN

COMPOSITE SYSTEM RELIABILITY USING GENETIC ALGORITHMS

I. Introduction

Many vital industries can suffer serious losses as a result of a few minutes of

power interruption. In the current competitive environment where power customers are

free to choose their power supplier, it is expected that failure frequency will be an

important factor in their decision to select such a supplier. This should be a motivation

for the utilities in the restructured power environment to consider failure frequency in

their planing for system expansion and to improve the failure frequency and duration of

existing systems. Such calculations require the development of faster and reliable

methods for state sampling and evaluation.

Sequential Monte Carlo simulation is perhaps the most suitable method to

calculate frequency and duration indices because of its ability to represent chronological

load of buses on an hourly basis. System behavior is simulated from one year to another

and the number of system transitions from success states to failure states is calculated for

each year. After enough simulation years, the average value of this number represents

the expected value of system failure frequency.  However, this technique suffers from

the extensive computational effort it needs.

Meanwhile, the assessment of composite system frequency and duration indices is

more complex than the assessment of other adequacy indices when using analytical

methods or non-sequential Monte Carlo simulation for state sampling. This is due to the

fact that calculation of failure frequency for a single sampled state is not straightforward

like other adequacy indices. The state transition for each system component in the

current sampled state needs to be considered to determine if this transition results in a

success state, i.e., system state crosses the boundary between failure and success states.
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Such an operation is computationally burdensome for large systems. To solve this

problem a conditional probability based approach has been introduced in [23] and [34].

This approach is based on the forced frequency balance approach introduced in  [22].

This chapter presents a new approach to calculate the annual frequency and

duration indices [35]. In calculating the annual indices, the system yearly chronological

load curve is considered rather than considering only system maximum load in case of

annualized indices. The k-means clustering technique is used to represent the system

yearly load curve as a multi-state component.  Transition rates between different load

states are calculated. The GA is used to sample failure states while the system load is

assigned its maximum value. Failure states are then reevaluated with lower load states

until a success state is obtained or all load states have been evaluated. The developed

methodology has been applied to a sample test system. Results are compared with those

obtained by non-sequential Monte Carlo simulation. The results are analyzed to validate

the efficiency of the developed method.

II. Modeling of the Chronological Load

Many techniques have been used to represent system load in composite system

reliability evaluation. The most common one is to aggregate the chronological load

curve into a certain number of steps. Each load step has its probability of occurrence.

Another efficient technique is the use of k-means clustering technique [36]. This

technique has shown efficiency when applied to both generation system reliability [32]

and multi-area reliability [33]. In the proposed method, clustering has been used to

represent the system load curve. It is assumed that loads installed at different load buses

are fully correlated.  This means that each bus always has an hourly load value with the

same percentage of the system total load at this hour.

A. Clustering Technique

The following procedure is used to represent the system yearly load curve by m
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clusters. The objective of clustering is to obtain the mean value )( jCL and its probability

of occurrence )( jCP  for each load cluster jC .

1. The first step is to choose initial values of cluster means. Consider that the

system load at hour i is LHi and the system yearly maximum load is Lmax. The following

initial values are suggested to be used. Initial cluster mean for first cluster is chosen as
max1 98.0)( LCL = . For the second cluster max2 96.0)( LCL = . This process is repeated for

all clusters so that the last cluster m has cluster mean :
max).02.01()( LmCL m −=                                            (6.1)

The 0.02 step size allows maximum number of 50 clusters and can be decreased to

obtain more clusters.

2. For each hour i calculate the distances ijDIST  between the system load value at

hour i and every cluster mean value:

i
j

ij LHCLDIST −= )(           ∀j=1,2,��.,m                            (6.2)

3. Load value at hour i belongs to the cluster with the least   distance, i.e.,

  ikimii
k

i DISTDISTDISTDISTCLH =∈ ),........,,min(  if  21                     (6.3)

In this manner load value at each hour is assigned to a certain cluster after repeating step

3 for each of them.

4. Calculate the new mean load value for each cluster.

                                                           
j

i
i

j
new

T

LHb

CL
∑

==

8760

1

*
)(    ∀j =1,2 ,��,m                              (6.4)

where 


 ∈

=
otherwise     0    

  if      1    j
i CLH

b

and Tj is the total number of hourly load values belonging to cluster jC .

5. For each cluster calculate the absolute difference between old and new means.

                             )()( j
old

j
newj CLCLchange −=        ∀j =1,2 ,��,m                    (6.5)

6. Repeat steps from 2 to 5 until  �changej� is less than a prespecified limit for all
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clusters.

7. Calculate the probability of occurrence of each cluster mean load value.

                                                              
8760

)( jj T
CP =                                               (6.6)

8. Using such initial values as given in step 1 ensures that final clusters mean

values are in descending order where cluster 1C  has the highest mean value and cluster
mC  has the lowest mean value, i.e.,

                                    )(..............)()( 21 mCLCLCL >>>                                     (6.7)

B. Calculating Transition Rates Between Load Clusters

An important issue in calculating frequency and duration indices is to preserve the

chronological transition of load levels from one hour to another. Load transition

contribution to system failure frequency is usually higher than the combined contribution

of generation and transmission systems. Using k-means clustering technique the

chronological load curve is represented as a multi-state component. Each cluster

represents a single state associated with its probability and capacity. It is necessary to

calculate transition rates between different load states to be used later for calculation of

failure frequency for each sampled failure state. The following procedure is used to

calculate transition rates between load clusters:

1. Each cluster consists of hourly load values at different hours during one year.

The cluster number, to which each hourly load value belongs, is saved.

2. Initialize transition frequencies between different clusters.

 0=xyf   ∀ x=1,2,��,m ; ∀y=1,2,���.m  ;  x≠y                            (6.8)

3. Transition frequencies between clusters are calculated by repeating the

following process for each hourly load value:





 ≠∈∈+
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f                             (6.9)
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4. Transition rates between different clusters are calculated:

                   







=

≠=∀=∀
=

yx                       0

y x ; m1,2,.....,y ; m.,1,2,......x  
)( x

xy

xy CP

f

λ                     (6.10)

where λxy is the transition rate of system load from state x to state y.

III. Calculating Failure State Contribution to System Failure Frequency

Each sampled state represents a system contingency where one or more generation

units and/or transmission lines are in the down state. Load level can also be sampled

when using non-sequential Monte Carlo simulation. A sampled stated �i� is identified as

a failure state if a load curtailment �LCi� is needed for reasons of generation deficiency

to meet load demand or/and transmission line overloading. Consider the load is in state r

in the current sampled state i, the state probability �SPi� is:

∏ ∏∏∏
∈ ∈∈∈

−−=
gsj tfj

j
tsj

j
gfj

jj
r

i PTPTFORFORCPSP .)1(.).1().(            (6.11)

where gs is the set of generation units in the up state, gf is the set of generation units in

the down state, ts is the set of transmission lines in the up state, tf is the set of

transmission lines in the down state, FORj  is the forced outage rate of generator unit j

and PTj is the failure probability of transmission line j.

Power not supplied for the current state weighted by its probability is:

                                   iii LCSPPNS .=                                                   (6.12)

The contribution of a failure state  to system failure frequency consists of three

components. The first component �FG� is due to transitions of generation units, the

second component �FT� is due to transition of transmission lines and the third

component �FL� is due to load level transition from its current state to another load

state. The failure state contribution to system failure frequency �LOLFi� is calculated:
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                          iiii FLFTFGLOLF ++=                                               (6.13)

Each frequency component is calculated using the conditional probability

approach described in [23] and [34]. This approach is applicable under two assumptions:

The first assumption is that system is coherent which implies that:

i. System remains in its success state if a component makes transition from its

current state to a higher state. In case of generation unit, higher state means a state with

higher generation capacity. In case of transmission lines, higher state means the line is

restored to service. In case of load state it means load level is decreased.

ii. System remains in its failure state if a component makes transition from its

current state to a lower state. In case of a generation unit, lower state means a state with

lower generation capacity. In case of transmission lines, lower state means the line goes

out of service. In case of load state it means load level is increased.

The second assumption is that system components are frequency balanced, i.e.,

transition frequency between two states is the same in both directions. This assumption

is satisfied in case of two state components. It is artificially enforced in case of multi-

state components as is the case with load states.

Generating units are represented by two states, up state and down state. In the up

state, generating unit is able to deliver power up to its rated capacity and deliver no

power in the down state. Each transmission line is represented by two states, up state,

i.e., in service and down state, i.e., out of service. The contributions of generating units

and transmission lines transition to the sate failure frequency are :
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where µk is the repair rate and λk is the failure rate of component k.

System load is represented as a multi-state component. The first state has the
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highest load value and the mth state has the lowest. Consider load in the rth state within

the current sampled failure state, the contribution of load transition to the sate frequency

is:
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In the second term of (6.16) fictitious transition rates from state r to higher load levels

� rjλ′ � have been used instead of the actual transition rates rjλ to satisfy the frequency

balance assumption.
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IV. Non-Sequential Monte Carlo Sampling

When using non-sequential Monte Carlo simulation for state sampling, a random

number in the range [0,1] is picked for each system component. In case of two-state

components, if this number is less than the component failure probability the component

is considered to be in the down state otherwise, it is in the up state. In case of multi-state

load model the range [0,1] is divided into m parts, load is in the rth  state if the picked

random number z falls in the rth part, i.e.,
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where Li is the system load value at state i.

Each sampled state is evaluated using the minimum load curtailment linear

optimization module. Composite system adequacy indices are calculated after N samples

as follows:

N

N
LOLP f=                                                     (6.19)

where LOLP is the system loss of load probability and Nf  is the total number of failure
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state in the N samples.
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where LOLF is the system loss of load frequency and fs is the set of sampled failure

states.
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where EPNS is the system expected power not supplied.

Expected energy not supplied is calculated from EPNS :

                                EPNSEENS .8760=                                                (6.22)

Loss of load duration in hours per year can be calculated once LOLP and LOLF

are known.

                                 
LOLF

LOLP
LOLD

8760.
=                                                (6.23)

Coefficient of variance for EPNS is usually used as a convergence indicator to stop

sampling. It is calculated as follows:
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V. GA Sampling for Maximum Load State with Series State Reevaluation

In the proposed approach, GA searches for states which result in system failure

while system load equals the maximum load state value as explained previously in

chapter IV. These failure states are then reevaluated while assigning system load the

values of other load states in a descending order. This series state evaluation process

stops when there is no load curtailment in a certain load state or the current network

sampled state i.e. states of generating units and transmission lines, has been reevaluated
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with all load states. Adequacy indices are updated with each state evaluation process.

The main steps for this approach are:

1. Each chromosome in the current GA population represents a sampled network

state, i.e., states of generators and transmission lines. Each chromosome with probability

higher than the threshold value is checked wither it has been previously saved in the

state array i.e. represents old network state, or not i.e. represents a new network state.

Steps from 2 to 5 are repeated for each new network state k in the current population.

2. Evaluate the new system state �i� which is formed from   the new network state

and the system maximum load state )( 1CL .

3. If the evaluated state represents a success state i.e. there is no load curtailment,

ignore all the remaining load states as it is guaranteed there is no load curtailment with

lower load states and return to step 2 for considering the next new network state.

4. If the evaluated state represents a failure state i.e. there is load curtailment,

update the system adequacy indices.

                           ioldnew PSLOLPLOLP  +=                                             (6.25)

                          ioldnew PNSEPNSEPNS +=                                           (6.26)

                          ioldnew FSLOLFLOLF  +=                                               (6.27)

 PSi , PNSi and FSi  are calculated for state i using (6.11), (6.12) and (6.13)

respectively.

5. Assign system load the lower load state ).( 2CL Now a new system state �i+1�

has been created which is formed from network state k and the new load state. This new

system state is evaluated. If it represents a success state the remaining   load states are

ignored and hence jump to step 2 for considering a new network state. Otherwise, it is a

failure state, adequacy indices are updated using (6.25),(6.26) and (6.27).  A new system

state �i+2� is formed from network state k and the next lower load state )( 3CL . This

process for network state k is repeated until encountering a system success state or

network state k has been evaluated considering all the m load states.

6. If GA sampling stopping criterion has been satisfied proceed to step 7.
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Otherwise produce a new population and return to step 1.

7. After GA stops the searching process, the final updated indices represent the

composite system adequacy indices. EENS and LOLD can be calculated using (6.22) and

(6.23).

VI. Case Studies

Both non-sequential Monte Carlo simulation and the proposed GA based method

have been applied to the RBTS test system [26] to calculate its annual frequency and

duration indices. Sampled states in both methods are evaluated using linearized

minimum load curtailment model based on dc load flow equations, which is explained

previously in chapters IV and V.

Yearly load curve data for the RBTS system in per unit of its maximum load (185

MW) is given in [24]. The full correlation assumption means that each load bus hourly

load values have a fixed percentage of the system total load throughout the year. The

chronological load curve is represented by eight clusters. Load value and probability of

occurrence for each load state were give previously in Table XII. Transition rates

between load states are given in Table XVII. The annual adequacy indices for RBTS

system using both non-sequential Monte Carlo simulation method and the proposed GA

based method are given in Table XVIII. In the GA method, states are evaluated with the

highest load state and failure states are reevaluated for lower load states in descending

order until encountering a success state or if all load states are considered. The

percentage contributions of generation units, transmission lines and load state transitions

to the system LOLF using both methods are also given in Table XVIII. A comparison of

different types of sampled states by both methods is given in Table XIX.

Monte Carlo simulation is stopped after 50,000 samples as the coefficient of

variance of EPNS reaches 13%. GA is stopped after producing 1000 generations. GA

parameters are:  population size = 40, crossover probability = 0.7, mutation probability =

0.05 and threshold network probability = 1e-8.

The relationship between number of samples, computational time and adequacy
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indices when using non-sequential Monte Carlo simulation is shown in Table XX. The

relationship between GA generations, computational time and adequacy indices when

using the proposed GA based method is shown in Table XXI.

Table XVII. Transition Rates Per Year Between the Load Eight States

To state no.From

state no. 1 2 3 4 5 6 7 8
1 0 1536 0 0 0 0 0 0
2 629 0 1441 82 0 0 0 0
3 44 1271 0 1662 780 0 0 0
4 0 135 1251 0 2047 313 0 0
5 0 0 359 1684 0 0 1965 183
6 0 0 0 216 1507 0 2440 7
7 0 0 0 0 506 1605 0 1221
8 0 0 0 0 0 90 1633 0

Table XVIII. Comparison of Annual Adequacy Indices and Failure Frequency
Components with the Two Assessment Methods

Assessment
method

Non-
Sequential

Monte Carlo

GA
Sampling

Percentage
difference

LOLP 0.00130 0.00128248 1.3%
EENS

(MWH/Y)
133.98 132.09 1.4%

LOLF
(occ./Y)

1.3398 1.2538 6.4%

FG/LOLF 2.8% 4.6% -----
FT/LOLF 76.5% 79.8% -----
FL/LOLF 20.7% 15.6% -----
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Table XIX. Comparison of Sampled States with the Two Assessment Methods

Assessment method non-seq.
Monte Carlo

GA sampling

no. of sampled failure states 65 2747
no. of sampled network states by GA N/A 2189

no. of system sampled states by Monte Carlo 50000 N/A
no. of evaluated system states 50000 4738

Table XX. Relationship Between Number of Samples, Computation Time and Adequacy
Indices When Using Non-Sequential Monte Carlo Simulation

No. of
samples

Comp.
time in

sec1

EENS
MWH/Y

LOLF
occ/y

Coefficient
of variance

COV(EPNS)

No. of
failure
states

10 000 334 206.05 2.1431 23.3% 20
20 000 662 146.50 1.5040 19.2% 30
30 000 990 155.74 1.6537 15.4% 46
40 000 1318 136.12 1.3837 14.2% 54
50 000 1646 133.98 1.3398 12.9% 65

            1On AMD K6-II 450 MHz processor based PC.

Table XXI.  Relationship Between GA Generations, Computation Time and Adequacy
Indices When Using the Proposed GA Based Method

No. of
GA

generations

Comp.
time in

sec2

EENS
MWH/Y

LOLF
occ/y

No. of network
sampled states

No. of
evaluated

system states

No. of
system

failure states
50 25 13.40 0.1710 334 656 346
100 58 122.68 1.0995 678 1586 986
200 110 129.91 1.2245 1325 2984 1803
400 162 131.92 1.2506 1804 4077 2457
800 218 132.06 1.2535 2123 4645 2720
1000 240 132.09 1.2538 2189 4738 2747

    2On AMD K6-II 450 MHz processor based PC.
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The following observations can be made from Tables  XVIII, XIX, XX and XXI:

1. Transitions of transmission system contribute about 80% to system failure

frequency while load state transitions contribute  15.4%. Usually load state transitions

have much more contribution to system failure frequency. The reason for these results

for the RBTS system is that bus number 6 is connected by only one transmission line to

the remaining network, hence, transition of this line from up state to down state results in

system failure.

2. After about 20,000 samples, results obtained by Monte Carlo simulation

fluctuate around the values obtained by GA.

3. GA was able to reach EENS value that is less than the final value by only 2%

after 200 generations. This result is obtained after sampling 990 failure states. It took

Monte Carlo simulation 40,000 samples to reach such accuracy.

4. Computational effort of the proposed GA based method is about 12% of that of

non-sequential Monte Carlo simulation to reach same accuracy level.

5. As GA samples more failure states, EENS increases which means value

obtained by GA is sure less than the actual value. However, when using Monte Carlo

simulation the obtained EENS cannot be guaranteed to be lower or higher than the actual

value.

6. In case of Monte Carlo simulation, even with coefficient of variance 15% after

30,000 samples the obtained EENS is higher than actual value by 17%.

VII.   Conclusions

This chapter has presented a new approach for the assessment of annual frequency

and duration indices of the composite power system. Annual load curve is represented as

a multi-state component and GA is used as a sampling tool to search for failed network

states. GA samples failure states with system load assigned the value of maximum load

state. Failure states are then reevaluated with lower load states until a success state is

obtained or all load states have been evaluated. The proposed method has been tested on

the RBTS test system. Results are compared with those obtained by non-sequential
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Monte Carlo simulation. Comparison shows that the computational effort needed by the

proposed method is much less than that of Monte Carlo simulation.
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CHAPTER VII

GENETIC ALGORITHMS APPROACH FOR THE EVALUATION OF

COMPOSITE GENERATION-TRANSMISSION SYSTEMS RELIABILITY

WORTH

I. Introduction

Reliability cost/worth studies are very important for system planning. Reliability

worth indices can be used in the optimal planning of power systems. These can be used

as part of the objective function or as a constraint. In the first case, the planning problem

is represented as a multi-objective problem. These objectives are minimizing power

interruption cost, the cost of adding new generating units and building new transmission

lines. These can also be incorporated as a constraint so that expected power interruption

cost is less than a pre-selected value. Reliability worth can be represented by two indices

which are loss of load cost (LOLC) in $ per year and the interrupted energy assessment

rate (IEAR) in $ per kWh. Cost of power interruption depends on many factors such as

interruption duration and the categories of interrupted loads.   The most popular way to

express interruption cost is the use of customer damage function (CDF) for each load

type. The CDF for each load category is a function of interruption duration and can be

obtained by customer surveys and has been reported for some countries such as Canada,

the United Kingdom and Nepal [37].

Reliability worth evaluation of composite systems is divided into two main stages.

The first stage is to sample system states, each sampled state represents a system

contingency. The second stage is to evaluate each sampled state to determine if it is a

failure or success state. State sampling or selection is performed through Monte Carlo

simulation methods or analytical methods. State evaluation is formed as an optimization

problem with the objective of minimizing load curtailment.

Random sampling, sequential and pseudo-sequential Monte Carlo simulation have
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been used for the assessment of reliability worth  [38] . A key issue in determining

LOLC is calculation of the interruption time. This is because LOLC depends on the

value of CDF which is a function of the state failure time. Using the mean interruption

time can lead  to a significant error in LOLC as it represents approximation of state

duration. Sequential Monte Carlo simulation using system state transition can be a good

way to represent the actual interruption duration. A comparison between different

methods of calculating LOLC is given in [39].

In this chapter, the two GA sampling approaches developed in chapter V are used

to calculate reliability worth indices [40]. The GA is used as a state sampling tool for the

composite power system network. Binary encoded GA is used to represent network

states. System yearly load curve is represented as a multi-state component.  In the first

approach, GA samples failure states for each load level separately. Thus reliability worth

indices are calculated for each load level and then combined to obtain the annual

reliability worth indices. In the second approach, GA samples failure states with load

buses assigned the maximum load state. Failure states are then reevaluated with lower

load level states until a success state is obtained or all load levels have been evaluated. In

both approaches, GA is able to trace failure states in a more efficient manner than

conventional methods. An optimization model based on linearized  load flow is used for

the evaluation of sampled states. Two different objectives are used in state evaluation.

The first one is to minimize load curtailment considering load category and load bus

relative importance. The second objective is to minimize load interruption cost. Instead

of using the raw interruption cost associated with failure state mean duration time,

random sampling is used to calculate mean interruption cost associated with each failure

state. Case studies on the RBTS test system considering different state evaluation

methods and cost calculation methods are described.

II. Calculating Reliability Worth Indices

A sampled state consists of the states of generating units, transmission lines and

system load. Generating units and transmission lines are represented as two-state
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components.   System load is represented as a multi-state component. Using the k-means

clustering technique [32], [33], the system yearly load curve is represented by m

clusters. It is assumed that the first state has the highest load value and the mth state has

the lowest load value.

A sampled stated �i� is identified as a failure state if a load curtailment iLC  is

needed for reasons of generation deficiency or/and transmission line overloading. The

following indices are calculated for each sampled failure state �i�:

i. The state probability �SPi� is :

               ∏ ∏∏∏
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where )( rCP  is the probability of the system load state r,  gs is the set of generating

units in the up state, gf is the set of generating units in the down state, ts is the set of

transmission lines in the up state, tf is the set of transmission lines in the down state,

FORj  is the forced outage rate of generating unit j and PTj is the failure probability of

transmission line j.

ii. Power not supplied for the current state weighted by its probability is:

                                             iii LCSPPNS .=                                                             (7.2)

iii. The frequency of state i, �FSi� is :

                          i
tsk

k
tfk

k
gsk

k
gfk

kii FLSPFS ++++= ∑∑∑∑
∈∈∈∈

).( λµλµ                               (7.3)

where µk, λk are the repair rate and failure rate of component k and FLi is the

contribution by load transition from its current state to other load states.
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where λrj  is the transition rate from load state r to state j.

iv. The state mean duration �Di� is:
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v. It is assumed that system loads at different buses are categorized into seven
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types  [6] which are agriculture, large users, residential, governmental and institutional,

commercial, industrial and offices. The load curtailed can be presented as:

                                            ∑
=

=
7
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j
ii LTLC                                                                 (7.6)

where j
iLT is the total amount of curtailment of load category j in state i. The cost in $

due to load curtailment in state i is:
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where jCDF (Di)  is the value of the cost damage function in $ per kW of curtailed load

of category j. It can been seen that LOLCi  depends on the value of CDF which is a

function of the interruption duration. In real life, interruption duration is a random event

and is difficult to estimate. Hence, it is more appropriate to calculate a mean CDF value

associated with each failure state rather than the use of raw CDF value associated with

the mean interruption duration. Assuming that the interruption duration follows

exponential distribution, the mean CDF value for a given failure state is:
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where Zk is a random number between 0 and 1 and N is the number of times a random

number is picked. Now, LOLCi can be calculated by using jCDF instead of jCDF (Di)

in (7.7).

It should be noted that the use of either (7.7) or (7.8) considers each failure state

separately. It is possible to encounter two  failure states successively and in such a case

interruption time would include not only the failure state under investigation but also the

following state. Thus the value of the CDF will be different than considering each state

separately. Detailed discussions about considering successive failure states are given in

[38] and [39]. Considering each failure state separately represents an acceptable

approximation for the following reasons:

1. The likelihood for a failure state to be followed by another failure state is small

as a remedial action would be taken to restore the system to its success state.
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2. The value of CDF for different load categories is almost constant as the

interruption duration increases. Hence, it will not make much difference to consider each

state separately.

After calculating the previous indices for each sampled failure state, reliability

worth indices for composite system are calculated as follows:

The expected energy not supplied in MWh/Year is

                                             ∑
∈

=
fsj

jPNSEENS .8760                                                 (7.9)

where fs is the set of sampled failure states. The system LOLC in $/Year is :
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The system  IEAR in $/kWh is :
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LOLC
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.1000
=                                                         (7.11)

The same indices can be calculated for each load bus by considering only the

subset of failure states where the bus under consideration has encountered load

curtailment.

III. GA Sampling with M Load States

As described in chapter IV, the developed GA based method is divided into two

main parts. First GA searches intelligently for failure states using its fitness function.

The fitness function uses a linear programming module to determine if a sampled state

represents a failure or a success state. Two different objectives can be used for the linear

programming module. The first one is to minimize load curtailment. The second one is

to minimize interruption cost. The objective in both cases must be achieved without

violating system constraints.  A sampled state represents a failure state when load is

curtailed to prevent transmission line overloading and/or there is a deficiency in the

available generation to supply demand. Data of each sampled state by GA is then saved

in a state array. After the search stops, the second step begins by using all the saved

states  to calculate the adequacy indices for the whole system and at each load bus. The
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Two different GA sampling methods  when considering load curves were introduced in

chapter V.  Explanation of how these methods are used for reliability worth evaluation is

given in the next two sections.

A. GA Parallel Sampling

In this approach GA searches for failure states considering each load state

separately.  Each GA chromosome represents a system state. Each chromosome consists

of binary numbered genes. Each gene represents a system component. The first �ng�

genes in the chromosome represent generation units while the remaining �nt� genes

represent transmission lines. If any gene takes a zero value this means that the

component it represents is in the down state and if it takes a �1� value that means the

component is in the up state.

Each chromosome is evaluated through the fitness function. Fitness function calls the

state evaluation module only if the state probability is higher than a threshold value and

it represents a new state. New state means that it has not been previously included in the

state array. For each chromosome produced with a state probability higher than a

threshold value the binary number it represents is converted to its equivalent decimal

number. A search for this number in the state array is performed and if such a number is

found it means this chromosome represents an old state otherwise it represents a new

state.  State evaluation module determines if the chromosome represents a failure or

success state and the amount of load curtailment in case of failure state. Evaluated state

data, its decimal equivalent number and the results of its evaluation are added to the state

array. In case of chromosomes representing old states their evaluation data is retrieved

from the state array and there is no need to reevaluate them. The suitable choice for the

fitness function can add the required intelligence to GA state sampling. One possible

choice of the fitness function is given in (7.12).
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where SPj is the state probability, β is a small number in the range of 0.1 to 0.0001and α

is a very small number i.e. 1e-20. In this manner the fitness value of old failure

chromosome is reduced to enable GA to search for more failure states and prevent that

failure state with higher probability to dominate other failure states. Fitness function is

scaled to enhance the performance of GA search process.

After calculating the fitness value of all chromosomes in the current population, GA

operators are applied to evolve a new generation. These operators are selection schema,

cross over and mutation. New GA generations are produced until reaching a stopping

criterion.

 Reliability worth indices are calculated for the current load state. This process is

repeated for all load states. Transition rates between current load state and other load

states must be considered as descried in chapter VI when calculating state duration and

state frequency. The system reliability worth indices are calculated as follows:
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where LOLCk and EENSk are loss of load cost and expected energy not supplied

calculated while the system load is assigned the value of load state k.  This approach has

the advantage of giving more accurate results but has the disadvantage of the high

computational effort required as the search process is repeated m times. Parallel

computation can be used with this approach.  Failure states for each load level are

sampled separately on different machines and in the final step different load level indices

are added together to obtain reliability worth adequacy indices.
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B. GA Sampling  for Maximum Load State with Series State Reevaluation

 In this proposed approach GA searches for states which result in system failure

while system load equals the maximum   load state value. These failure states are then

reevaluated while assigning system load the values of other load states in a descending

order. This series state evaluation process stops when there is no load curtailment in a

certain load state or the current network sampled state i.e. states of generating units and

transmission lines, have been reevaluated with all load states. Reliability worth indices

are updated with each state evaluation process. The main steps for this approach are:

1. Each chromosome in the current GA population represents a sampled network

state, i.e., states of generators and transmission lines. Each chromosome with probability

higher than the threshold value is checked whether it has been previously saved in the

state array. Steps from 2 to 5 are repeated for each new network state k in the current

population.

2. Evaluate the new system state �i� which is formed from   the new network state

and the system maximum load state i.e. state number 1.

3. If the evaluated state represents a success state i.e. there is no load curtailment,

ignore all the remaining load states as it is guaranteed there is no load curtailment with

lower load states and return to step 2 for considering the next new network state.

4. If the evaluated state represents a failure state, i.e., there is load curtailment,

update the system reliability worth indices.

                                         ioldnew LOLCLOLCLOLC  +=                                         (7.15)

                                          ioldnew PNSPNSPNS +=                                               (7.16)

LOLCi  and PNSi  are calculated for state i using (7.7) and (7.2) respectively.

5. Assign system load the lower load state i.e. state number two. Now a new

system state �i+1� has been created which is formed from network state k and the new

load state. This new system state is evaluated. If it represents a success state the

remaining   load states are ignored and hence jump to step 2 for considering a new

network state. Otherwise, it is a failure state, reliability worth indices are updated using
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(7.15) and (7.16).    A new system state �i+2� is formed from network state k and the

next lower load state number 3. This process for network state k is repeated until

encountering a system success state or  if network state k has been evaluated considering

all the m load states.

6.If GA stopping criterion has been satisfied proceed to step 7 otherwise produce a

new population and return to step 1.

7.After GA stops the search process, the final updated indices represent the composite

system reliability worth indices. EENS and IERA can be calculated using (7.9) and

(7.11).

IV. State   Evaluation Model

The state evaluation model is based on dc load flow equations. In each sampled

state, one or more generators and/or transmission lines are in the down state.  For the

current state to be evaluated, elements of the power system susceptance matrix B are

modified according to transmission line outages. The amount of available real power

generation at each PV bus is also updated according to the status of generation units

installed at such a bus. System load is assigned the value of the current load state. Load

value for each load bus has a fixed percentage of current system load. Different load

categories at certain load bus have in turn a fixed percentage of their bus total load.

State evaluation is formulated as an optimization problem. Two different

objectives are presented. The first objective is to minimize the total load curtailment for

the whole system. This optimization problem has multiple optimal solutions. Hence,

using different load curtailment polices results in the same system indices but different

bus indices. System loads are divided into seven categorizes as mentioned before.

Through weighting factors the following load curtailment policy can be implemented:

1. The relative importance of each load category in comparison with other load

categories.

2. The relative importance for each load bus in comparison with the remaining

load buses.
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The following optimization model implements this load curtailment policy.
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                         maxmin iii PGPGPG ≤≤                ∀  i=1,2,��...nv                      (7.22)

where:

n  is the total number of system buses,

nt   is the total number of the transmission lines,

nl is the total number of load buses,

nv  is the total number of buses that has installed generation,

Bij is the ijth element in the system susceptance matrix,

θi is the  voltage angle at bus i (bus 1 is assumed the reference bus with θ1 = 0 ),

r
icPD is the load demand of category �c� at bus �i� corresponding to load state number

�r�,

icLT  is the amount of load from category �c� to be curtailed at  bus i,

icW  is the weighting factor of load from category c installed at bus i, its values ranges

from 1 to 7nl, i.e., the least important load category installed at the least important bus

will have a value of 1 and the most important category installed at the most important

bus has the value of nl*7,

PTk ,yk are the maximum flow capacity and susceptance of transmission line k

connecting bus i and bus j,

PGi is the real power generation at bus i, PGi max is the maximum available generation at
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bus i and PGi min is the minimum available generation at bus i.

This model can be solved using linear programming methods like the dual simplex

or interior point method. The variable vector to be calculated by the linear programming

solver is { icLT  , PGj  , θr}  ∀i=1,2�.,nl ,  ∀c=1,2�.,7,    ∀ j=1,2,�..nv  and ∀ r=

2,3,��n.

The total amount of system load curtailment �LCi� is:

                                                 ∑ ∑
= =

=
nl

i c
ici LTLC

1

7

1
                                                          (7.23)

The load curtailment at load bus i   �LBi�  is:

                                                    ∑
=

=
7

1c
ici LTLB                                                            (7.24)

Another objective that can be used in the optimization model is to minimize the

system interruption cost for the sampled state [41]. This objective is difficult to be used

in practice as the interruption cost is a function of failure state duration that is usually

difficult to predict. A more realistic approach is to use the mean unit interruption cost

associated with each load category that can be calculated by (7.8). This objective can be

represented as:

                                                  ∑ ∑
= =

nl

i c
icc LTCDF

1

7

1
.min                                                    (7.25)

V. Case Studies

The proposed algorithm has been implemented through C++ programming

language. A C++ library of GA objects called GAlib developed by [28] has been

integrated into the implementation. The proposed method has been tested on the RBTS

test system [26]  shown in Fig. 7. Different load categories as a percentage of bus total

load are given in Table XXII  [6]. The customer damage function (CDF) for each load

type is given in Table XXIII. Points given in  Table XXIII are connected by straight

lines when using logarithmic scale on both axes. It is assumed that for interruption

duration higher than 480 minutes CDF for each load category has the same slope as
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between 240 and 480 minutes. These CDFs were obtained through different customer

surveys which were carried out by the power systems research group at university of

Saskatchewan university in 1987. All interruption costs are given in Canadian dollars.

Table XXII. Different Load Categorizes as a Percentage of Total Bus Load

Load type Bus 2 Bus 3 Bus 4 Bus 5 Bus 6

Agriculture 0.0 0.0 0.0 0.0 37.0

Large User 0.0 65.29 0.0 0.0 0.0

Residential 50.95 23.16 37.12 50.05 40.8

Governmental 22.20 0.0 0.0 33.30 0.0

Industrial 12.95 4.58 42.08 0.0 12.95

Commercial 13.90 4.35 20.80 9.25 9.25

Office 0.0 2.62 0.0 7.40 0.0

Table XXIII. Customer Damage Functions for Different Load Categorizes

Interruption Cost ($/kW)Load Type

1 min 20 min 60 min 240 min 480 min

Agriculture 0.060 0.343 0.649 2.064 4.120

Large User 1.005 1.508 2.225 3.968 8.240

Residential 0.001 0.093 0.482 4.914 15.690

Governmental 0.044 0.369 1.492 6.558 26.040

Industrial 1.625 3.868 9.085 25.163 55.808

Commercial 0.381 2.969 8.552 31.317 83.008

Office 4.778 9.878 21.065 68.830 119.160
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Yearly load curve data in per unit of RBTS system maximum load (185 MW) is given in

[24]. System loads are assumed fully correlated. The k-means clustering technique is

used to represent yearly load curve by 15 points given in Table XII.

A. Using Minimum Load Curtailment for State Evaluation

In this case study sampled states are evaluated by the minimum load curtailment

module. Weighting factors are adjusted to implement the following load curtailment

policy:

1. Importance of different load categories from the least important to the most

important are residential, agriculture, commercial, industrial, offices, governmental and

large users.

2. Importance of load buses from the least to the most important are 2, 3,4,5 and 6.

This means that the weighting factor associated with the residential load at bus 2 �W21�

has a value of 1. The weighting factor associated with large user load at bus 6 (in our

case its lower and upper limit is zero) �W67� is 35 (7 load categorizes multiplied by 5

load buses).

Reliability worth indices are calculated twice. First, they are calculated using the

raw unit interruption cost associated with the mean duration of interruption of the

sampled failure state. Then, they are calculated using the mean interruption cost obtained

from the mean value of 1000 raw interruption cost values each obtained by random

samples using the mean duration of the state.

Reliability worth indices are also calculated using the two different GA sampling

approaches explained previously.  In the first approach GA samples each of the 15 load

states separately. In the second approach GA samples failure states for the maximum

load state only with failure states reevaluated for other load points in descending order

until encountering a success state or considering all load levels. Reliability worth indices

for the whole system and for load buses using different strategies are given in Table

XXIV.
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Table XXIV. Reliability Worth Indices Using Minimum Load Curtailment State
Evaluation Module

GA samples maximum load state with
series state reevaluation

GA parallel
sampling

Sampling method

Reliability worth indices & other
factors

Using raw
interruption costs

Using mean
interruption costs

Using mean
interruption costs

EENS (MWh/Yr) 132.639 132.639 132.635
LOLC ($/Yr) 326,095 338,037 309,648

IEAR ($/kWh) 2.4585 2.5485 2.3345
no. of sampled network states by GA 2169 2177 32,032

no. of evaluated states 7650 7656 32,032
no. of failure states 5675 5672 5698

LOLC 5,337 7,972 8,673Bus 2
IEAR 0.8625 1.2883 1.4036
LOLC 2,610 3,898 4,268Bus 3
IEAR 0.8357 1.2481 1.3688
LOLC 313 468 497Bus 4
IEAR 0.8092 1.2094 1.2855
LOLC 486 547 520Bus 5
IEAR 2.8620 3.1745 3.0163
LOLC 317,347 325,151 295,689Bus 6
IEAR 3.1721 3.2502 2.9555

It can be seen in Table XXIV that LOLC value is higher when using the mean

interruption cost value. Another observation is that when GA samples failure state for

maximum load value and reevaluates failure states only with other load levels in

descending order the total number of evaluated states is reduced significantly, about 24%

of those obtained when evaluating each load level separately.

B. Using Minimum Interruption Cost for State Evaluation

In the second case sampled states are evaluated by the minimum cost state

evaluation module. System Reliability worth indices for the whole system and for load

buses using this load curtailment policy are given in Table XXV. It can be seen that the
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difference in the system LOLC using the two different load curtailment methods is about

1%. Meanwhile, LOLC indices at different buses are totally different. It can also be

observed that LOLC at bus 6 dominates LOLC at other load buses. This is due to the

poor connectivity of bus 6 to the remaining network.

Table XXV. Reliability Worth Indices Using Minimum Interruption Cost  State
Evaluation Module

Type of Interruption
costs

Using raw
interruption costs

Using mean
interruption costs

EENS (MWh/Yr) 132.6165 132.6169
LOLC ($/Yr) 324,473 333,911

IEAR ($/kWh) 2.4467 2.5179
LOLC 6 1Bus 2
IEAR 0.8162 0.9762
LOLC 3,412 5,263Bus 3
IEAR 0.8232 1.1775
LOLC 402 171Bus 4
IEAR 0.7563 0.8807
LOLC 509 488Bus 5
IEAR 2.5391 3.7142
LOLC 320,144 327,988Bus 6
IEAR 3.0489 3.1209

VI. Conclusions

This chapter has presented a GA based approach for composite system reliability

worth evaluation. Genetic algorithm (GA) is used as a state sampling tool for the

composite power system network. Two different sampling methods are presented. In the

first method, GA samples failure states for each load level separately. The second

method samples failure states while system load is assigned the highest load state and
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then reevaluates the same network state with other load states.   Two different load

curtailment polices have been presented. Different load categories are considered in the

state evaluation model. Instead of using the raw interruption cost associated with failure

state mean duration, random sampling is used to calculate mean interruption cost

associated with each failure state.
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CHAPTER VIII

GENETIC ALGORITHMS APPROACH FOR THE ASSESSMENT OF

COMPOSITE POWER SYSTEM RELIABILITY CONSIDERING MULTI-

STATE COMPONENTS

I. Introduction

In chapter IV, GA has been introduced as a sampling tool to calculate composite

system annualized adequacy indices. In chapter V, two different GA based approaches

have been introduced   for the assessment of composite power system annual adequacy

indices.

This chapter shows how the GA approach can be used with multi-state components

such as generating units with derated states [42]. It also considers common mode failure

for transmission lines. Binary encoded GA is used as a state sampling tool for the

composite power system network states. Populations of GA generations are constructed

from  chromosomes, each chromosome representing a network state, i.e., the states of

generation units and transmission lines. Each chromosome consists of several genes.  A

two-state component is represented by one gene. Meanwhile, every multi-state

component is represented by two or more genes, e.g., two genes are able to represent up

to four-state component. When calculating annual indices, hourly load is represented by

m load states using the k-means clustering technique. The GA searches for  failure states

while load buses are assigned the maximum load state. Failure states are then

reevaluated with lower load states until a success state is obtained or all load states have

been evaluated. The superiority of the proposed approach over other conventional

methods comes from the ability of GA to trace failure states in an intelligent, controlled

and prespecified manner through the selection of a suitable fitness function. A linearized

optimization load flow model is used for the evaluation of sampled states. Case studies

on a sample test system considering chronological load curves, derated states and
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common mode failures are presented.  Results are analyzed to determine the effect of

considering multi-state components.

II. State Representation Using GA

In the GA sampling approach each chromosome represents a system state. Each

chromosome consists of binary number  genes. Each gene represents a  system

component. The first �ng� genes in the chromosome represent generating units while the

remaining �nt� genes represent transmission lines. If any gene takes a zero value this

means that the component it represents is in the down state and if it takes a one value

that means its component is in the up state. To illustrate the chromosome construction,

consider the small RBTS test system [26] shown in Fig. 7. It consists of 4 generating

units installed at bus 1, 7 generating units installed at bus 2 and 9 transmission lines.

Consider the state when one 40MW generating unit installed at bus 1 is down,

transmission line number 5 is down and all other system components are up; the

chromosome representing this state is shown in Fig. 14.

1    1     1     1     0     1     1     1    1

L1 L2 L3 L4 L5 L6 L7 L8 L9

Transmission lines

1   1    1    1    1    1   1

Generation units
installed at bus #2

20
MW

20
MW

20
MW

20
MW

40
MW

1    0    1    1

Generation units
installed at bus #1

10
MW

40
MW

40
MW

20
MW

5
MW

5
MW

Fig. 14. Chromosome representation assuming each component has only two states.
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Each power generation unit and transmission line  is assumed to have two states,

up and down. The probability of any generation unit to be down is  equal to its forced

outage rate "FOR". The failure probability of any transmission line �i�, �PTi� is

calculated from its failure rate �λi� and repair rate �µi� as follows:

                                                      PTi = 
µλ

λ
ii

i

+
                                                          (8.1)

The total number of states �Nstates� for all  possible combinations of generating units

and transmission lines installed is:

                                                  Nstates =  2 ng + nt                                                            (8.2)

where �ng� is the total number of generation units and �nt� is the total number of

transmission lines in the system.

A. Representation of Generating Unit Derated States

It is common for generating units to operate in other states between "up" and

"down", these states are called derated states. In this case, generating unit models are

more detailed than the two state model.  Generating units are often modeled as three-

state components. These states are �up� with full capacity, �down� with zero capacity

and �derated� with a certain percentage of the full capacity. Each state has its probability

of occurrence.  The state transition diagram for a three-state model is shown in Fig. 15.

The two state model is a special case of this model where there is no derated state 2.

The GA sampling method can be modified to consider multi-state components

such as generating units with derated states and transmission line states when

considering weather effect. Instead of using one gene to represent one component, n

genes can be  used to represent up to 2n-state component, e.g., a three-state generating

unit is represented by two genes as shown in  Fig. 16.

Assuming that each of the two 40MW thermal units installed at bus 1 in  the RBTS

system is modeled as three-state component. Each of these two units is presented by two

genes. Consider the state when one of these units is in the down state and the other is in
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derated state and all other system components are up; the chromosome representing this

state is shown in Fig. 17.

Up
100MW

Derated
0<G<100

Down
0MW

µ1 µ2

µ3

λ2
λ1

λ3

Fig. 15.  Three-state model of a 100MW generating unit.

Unit State Gene
1

Gene 2 Capacity Probability

Up State 1 1 100MW Pup
Derated State 0 1 0<G<100 Pderated
Down State 0 0 0MW Pdown

Unused State 1 0 ---- 0

Fig. 16. GA representation of three-state unit.



109

1    1    1    1   1    1     1       1      1

L1 L2 L3 L4 L5 L6 L7 L8 L9

Transmission lines

1   1    1    1    1    1    1

Generation units
installed at bus #2

20
MW

20
MW

20
MW

20
MW

40
MW

01    00    1    1

Generation units
installed at bus #1

10
MW

40
MW

40
MW

20
MW

5
MW

5
MW

Fig. 17. Chromosome representation considering multi-state component.

B. Consideration of  Common Mode Failure in Transmission Lines

The common mode failure is an event when multiple outages occur because of one

common external cause. A typical example of common mode failure is the lightning

stroke into a tower causing a back-flashover to two or more circuits supported by this

tower. Other reasons such as the failure of a transmission tower supporting two circuits.

A simple common mode failure model for two components is shown in Fig. 18.

1U
2U

1D
2U

1U
2D

1D
2D

λ 1

µ 2

µ 1

λ 2

λ 1

µ 2

λ 2

µ 1

λ c

µ c

Fig. 18. State transition diagram for two transmission lines subjected to common

mode failure.
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When two transmission lines are subjected to common mode failure, they must be

treated as two dependent components. Using frequency balance equations [43]  for each

state, and assuming λ1=λ2=λ, µ1=µ2=µ; the probability of each state is calculated as:
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In the GA sampling approch, each transmition line in a group of lines that is

subjected to common mode failures  is still represented by one gene. The only difference

will be the using of comined state probaility instead  of  using the indpendent state

probability for each transmitiom line.

III. Case Studies

The proposed algorithm has been implemented through C++ programming

language. A C++ library of GA objects called GAlib developed by [28] has been

integrated into the implementation. The proposed method has been tested on the RBTS

test system  Studies have been made considering generation unit derated states and

transmission lines common outage failure.
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A. Generating Unit Derated States

The two 40 MW thermal units installed at bus 1 are assumed to have derated

states. Four different models given in  [6] are considered. These models are shown in

Fig. 19.  In model (a) each 40 MW is represented by four states with two derated states

of 20 MW and 32 MW. In Models (b) and (c) each 40 MW is represented by three-state

model. In model (d) each 40 MW unit is represent by two-state model. Data for all other

components are given in  appendix A.

Annualized adequacy indices are calculated by considering the system load fixed

and equal to 185 MW. A comparison between annualized indices obtained using random

sampling and GA based method is given in Table XXVI . Annual adequacy indices are

calculated by considering the system chronological load curve. Yearly load curve data in

per unit of RBTS system maximum load (185 MW) are given in [24]. Using k-means

clustering techniques, the yearly load curve is represented by 8 states which are given in

Table XII. A comparison of annual indices when using random sampling Monte Carlo

simulation and the GA based method is given in Table XXVII.

Table XXVI. Comparison of Annualized Adequacy Indices  Considering Different
Derated State Models

Model (a) Model (b) Model (c) Model (d)
GA 0.008169 0.0068417 0.007692 0.009759

Monte Carlo 0.007849 0.0067099 0.007509 0.009540LOLP
diff. % 3.92% 1.93% 2.38% 2.24%

GA 815.08 651.75 698.84 1052.23
Monte Carlo 776.66 638.02 678.65 1001.55EENS

diff. % 4.71% 2.11% 1.60% 4.8%
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Fig. 19. 40 MW Generating unit derated state models.
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Table XXVII. Comparison of Annual Adequacy Indices  Considering  Different Derated
State Models   

Model (a) Model (b) Model (c) Model (d)
GA 0.001226 0.001191 0.001224 0.001284

Monte Carlo 0.001160 0.001160 0.001169 0.001210LOLP
diff. % 5.38% 2.60% 4.49% 5.76%

GA 128.20 124.725 127.893 132.31
Monte Carlo 122.08 122.088 122.450 124.60EENS

MWh/Yr diff. % 4.77% 2.11% 4.26% 5.83%

It can be seen from Table XXVI and Table XXVII that consideration of derated

states has larger effect on annualized indices than on annual indices.

Indices obtained by the GA based method are higher than those obtained by Monte

Carlo simulation. If GA samples more failures states the value of LOLP and EENS will

be higher, thus the proposed GA based method provides more accurate results than

Monte Carlo simulation. When calculating annual indices the computational effort of the

GA based method was about 10% of random sampling Monte Carlo simulation.

B. Common Mode Outage

Two pairs of  transmission lines, lines 1&6 and lines 2&7, are assumed to be

installed on a common tower for their entire length. The common mode failure data for

these line as given in [26], is shown in Table XXVIII. Each pair of transmission lines is

represented by a four-state model as shown in Fig. 18. The probability of each state is

calculated using (8.3), (8.4) and (8.5). These values are given in Table XXIX.

Annualized and annual adequacy indices have been calculated using the proposed GA
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based method, and results are given in Table XXX.  It can be seen from these results that

consideration of common mode failure slightly increases the values for LOLP and EENS

of the RBTS system.

Table XXVIII. Common Mode Outage  Data for Transmission Lines on Common Tower

First Line Pair Second  Line Pair

Line no. 1 6 2 7

Common length km 75 75 250 250

Outage rate per year λc 0.150 0.500

Outage duration (hours) rc 16.0 16.0

Table XXIX. State Probability for Transmission Lines on Common Tower

First Line Pair Second  Line Pair

Probability of the two lines being up 0.996391844 0.988066635

Probability of the two lines being down 0.001770425 0.005846548

Probability of first line down and the

second is up

6.73059e-5 2.40269e-4

Probability of first line up and the

second is down

6.73059e-5 2.40269e-4
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Table XXX. Adequacy Indices  with and without  Considering
Common Mode Outage

Annualized Indices Annual IndicesIndices
Base Case WITH COMMON

MODE OUTAGE
Base Case WITH COMMON

MODE OUTAGE
LOLP 0.009753 0.009854 0.00128248 0.0012902321
EENS 1047.78 1071.251 132.090 132.965

IV.   Conclusions

A new genetic algorithm (GA) based  approach for the assessment of  composite

system adequacy indices while considering multi-state components has been presented.

The proposed method has the merits of intelligent search through GA fitness function.

The computational effort is less than other traditional methods because  each   sampled

state is  evaluated only once. The proposed method has been applied to the RBTS test

system. Results have been compared with those obtained using random sampling. It has

been shown that results obtained by the proposed method are more accurate than those

of Monte Carlo Simulation. Results show that consideration of derated states has more

effect on annualized indices than annual indices. Consideration of derated states results

in  lower values for LOLP and EENS. Meanwhile, consideration of common mode

failure gives slightly higher indices.
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CHAPTER IX

STATE EVALUATION IN COMPOSITE POWER SYSTEM RELIABILITY

USING GENETIC ALGORITHMS GUIDED BY FUZZY CONSTRAINTS

I. Introduction

Composite system reliability evaluation is divided into two main parts, state

sampling and state evaluation. Most of the research on this subject has focused on

developing new techniques for state sampling. There is a need for suitable state

evaluation methods for representing the system more realistically and yet be

computationally tractable.

The GA has the advantage of the generality of its objective function [44]. Any

objective function can be used as long as it reflects the goodness of a certain feasible

solution in comparison with others. In case of conventional mathematical programming

methods, each method is suited for certain kind of problems depending on linearity,

differentiability and continuity. GA shows more success in unconstrained optimization

problems. In case of constrained optimization problems, representation of the constraints

is still an active research area.  The most commonly used method is the integration of

penalty functions into the objective function to represent constraint violation. An

example of constrained problem in power systems is the solution of the ac load flow

problem proposed in [45]. Penalty functions were used to represent the mismatch in real

and reactive power. A new method presented in [46] uses the fuzzy logic to describe

system constraints to calibrate gas turbine blade cooling model using GA. Fuzzy rules

are used to judge the goodness of the solution and as a way to represent engineering

judgment on the solution quality.

In previous chapters GA was used as an intelligent sampling tool for the composite

power system states. This chapter presents a novel method based on GA for composite

system state evaluation [47]. The GA is used as an optimization tool for evaluating
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system states to find a viable solution for a sampled state that satisfies system

constraints. Evaluation model is based on the linearized dc load flow equations. Real

number encoded GA is used to represent different system variables. Fuzzy membership

functions are used to represent system constraints. GA fitness function is constructed

from the values of different fuzzy membership functions. Different load curtailment

philosophies can be implemented through the construction of fitness functions . The

fuzzy membership functions guide the GA to find a viable solution faster and in a more

intelligent manner than the use of traditional penalty functions. Fuzzy membership

parameter values can be adaptive according to available generation and load levels. The

proposed method is applied to a simple test system to show the results of using different

load curtailment policies on load point indices. Advantages of the proposed method over

other traditional methods are also discussed.

II. State Sampling and Evaluation Model

The first stage in composite power system reliability is to sample system states.

Each sampled state represents a system contingency, i.e., one or more of generator units

and/or transmission lines are in the down state. Monte Carlo simulation is one of the

commonly used methods for system state sampling. The GA sampling technique

represented in chapter IV can also be used.

State evaluation depends on the power flow model used for this purpose.

Linearized state evaluation model is based on dc load flow equations. In each sampled

state one or more generators and/or transmission lines are in the down state.  For the

current state to be evaluated, elements of the power system susceptance matrix B are

modified according to transmission line outages. The amount of available real power

generation at each PV bus is also updated according to the status of generation units

installed at such a bus. State evaluation is represented as an optimization problem with

the objective of minimizing the total load curtailment for the whole system, which is

equivalent to maximizing the load value at each load bus. The linearized optimization

model is formulated as follows:
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where:

n    is the total number of system buses,

nt   is the total number of the transmission lines,

nl   is the total number of load buses ,

nv  is the total number of buses that has installed generation,

Bij is the element at the ith row and jth column in the system susceptance matrix,

θi is the  voltage angle at bus i (bus 1 is assumed the reference bus with θ1 = 0 ),

PDi  is the yearly maximum load demand at bus i,

Li is the amount of load that could be supplied at  bus i,

PTk ,yk are the maximum flow capacity and susceptance of transmission line k

connecting between bus i and bus j,

PGi is the real power generation at bus i,

PGi max is the maximum available generation at bus i and

PGi min is the minimum available generation at bus i.

This model can be solved using linear programming methods like the dual simplex

method or interior point method. The variables vector to be calculated by the linear

programming solver is { Li , PGj  , θk}

∀ i=1,2�.,nl   ,   ∀ j=1,2,�..nv  and ∀ θk = 2,3,��n

The total amount of system load curtailment �LCs� is:
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∑ ∑
= =

−=
nl

i

nl

i
iis LPDLC

1 1
                                                 (9.7)

The load curtailment at load bus i   �LCi�  is

 iii LPDLC −=                                                        (9.8)

It is well known that this optimization problem has multiple solutions. A load

curtailment philosophy should be applied and integrated in the objective function to

obtain a unique optimal solution.

III. Proposed Technique for State Evaluation

A. Motivation

Implementing sophisticated load curtailment philosophies is difficult using

traditional linear programming methods. The proposed algorithm uses GA Guided by

Fuzzy Constraints and is abbreviated as �GAGFC�. The proposed algorithm is very

flexible for incorporating practical load shedding philosophies and results in more

realistic bus indices.

B. Chromosome Representation

Real number encoded GA is used to find an optimal solution that satisfies system

constraints with minimum load curtailment. Each chromosome in each population

represents a candidate solution for the linearized state evaluation model. Each

chromosome consists of �nv+nl-1� real number genes. Each one of the first �nv-1� genes

represents real power generation value at a certain PV bus. Generation at the selected

slack bus is not included. Each one of the next �nl� genes represents load value at a

certain load bus. The chromosome representation is shown in Fig. 20.



120

PG2 PG3 PGnv L1 L2 Lnl...PGk.... ......Lr........

Generation Bus
Real Power (MW) Bus Load Values (MW)

Fig. 20. Chromosome representation for state evaluation.

C. Constraint Representation Using Fuzzy Membership Functions

Instead of using hard constraints, soft fuzzy constraints are used to guide GA to

find a viable solution. Load values, slack bus real power to enforce system power-load

balance and transmission line capacity, each is represented by a fuzzy membership

function. The resultant value of each fuzzy membership function refers to the degree of

satisfaction of its corresponding constraint. Membership functions can have adaptive

parameters that can be changed according to the ratio of current available generation to

system maximum load. The following simple membership functions are used:

1.For each load value Li selected by GA, its membership value µLi is calculated

from the triangular membership function, triang(0.6PDi, PDi, 1.01PDi), shown in Fig. 21.

2.The amount of slack bus generation PG1 is calculated using the generation load

balance constraint:

 ∑∑
==

−=
nl

j
j

nv

i
i LPGPG

12
1                                                          (9.9)

Knowing the available generation at the slack bus for the current state to be

evaluated, a fuzzy membership function is used to represent the degree of satisfaction of

the chromosome calculated slack bus generation in comparison with the actual power

available at the slack bus. A simple membership function representing slack bus real

power satisfaction is given in Fig. 22.
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PDi 1.01PD i
0

µLi

0.6PDi

1

Fig. 21. Membership function of load Li.

PG1max 1.1PG1max0

µslack

1

Fig. 22. Membership function of slack bus.
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3. Line flow constraints are softened by allowing the power flow in any line to be

overloaded by a small percentage of its rated capacity. Power flow in line k has a

membership value   µflow,k   which is calculated using the  trapezoidal membership

function trapiz(-1.05PTk , -PTk , PTk , 1.05PTk), shown in Fig. 23.

PTk 1.05PTk
0

µflow,k

-PTk-1.05PTk

1

Fig. 23. Membership function of  line k power flow.

4.The fourth membership function represents the degree of solution optimality. In

case of linearized model, transmission line losses are ignored. Therefore, for a sampled

state a feasible solution with load curtailment equals to the amount of generation

deficiency is for sure an optimal solution. This optimal solution can be reached only if

there is no overloaded line. The value of µoptimal is calculated from the trapezoidal

membership function shown in Fig. 24.
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0.50

µoptimal

-0.0001-0.5 0.0001
optimal

Fig. 24. Membership function of solution optimality.

The variable �optimal� is calculated for each chromosome as follows:

av
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i
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where Li is the chromosome gene value representing load at bus i, PGi is the

chromosome gene value representing real power at bus i, av
iPG is the total available

generation (real power) at bus i in the current state to be evaluated (not the gene values)

and Lmax  is the system annual maximum load.
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D. Construction of GA Fitness Function

It is easier to construct the fitness function in case of unconstraint optimization

problems. In case of constrained optimization problems, more sophisticated fitness

function is needed. Dealing with constraints in GA can be done according to their types

as follows :

i. Lower and upper limits for optimization variables can be enforced through the

choice of the appropriate type of GA operators. These operators always produce new

chromosomes in which all variables are within their upper and lower limits.

ii. Dealing with other constraints can be implemented using different techniques.

The most commonly used one is the integration of penalty functions in the fitness

function. In case of minimization problems, penalty values increase as the constraint

violation increases.

The objective of GA in the proposed method is to find a solution with all

membership functions equal or are very close to unity value, which represents a success

state without load curtailment. Load curtailment becomes a necessity if the amount of

generation is less than the load or to eliminate transmission line overloading. In this

case, GA searches for a solution with the least amount of load curtailment. The objective

of optimization  is to maximize load value at each load bus. The fuzzy soft constraints

guide the GA to reach an optimal feasible solution faster and more intelligently than the

use of traditional penalty functions. Attention should be given to the feasibility of

solution while constructing the fitness function. Chromosomes representing unfeasible

solutions where one or more of the constraints are violated should have less fitness value

than other feasible solutions. The proposed method provides the flexibility of

implementing sophisticated load curtailment techniques through GA fitness function.

The following fitness functions represent some possibilities of load curtailments

techniques. It is assumed that load curtailment is a necessity for the sampled state to be

evaluated.
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1. Maximum allowable load curtailment at each load bus

The objective of this load curtailment philosophy is to find an optimal solution

with load curtailment not to exceed certain value at each load bus. Membership function

for a load bus equals zero if curtailed load is higher than the maximum allowable load

curtailment at this bus. The fitness function to achieve such a load curtailment

philosophy is constructed as follows:

                  
1.                     .
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GA stops after producing a specified number of generations or finding an optimal

solution with 1=optimalµ  and 0
1

>∏
=

nl

j
Lj

µ .

If the optimal solution found by GA has fitness value equal to one this means one or

more of load membership functions equal zero. In this case, load membership functions

are modified to allow more curtailed load and GA searches for a new solution.

The fitness function given in (9.12) will guide GA to find a feasible solution at first,

i.e., 1.
1

=∏
=

nt

k
flowslack K

µµ , which means generation-load balance is satisfied and there is no

transmission line overloading. All unfeasible solutions will have a fitness value less than

one. As the degree of constraint violation increases, the solution fitness value decreases.

Feasible solutions will have a fitness value higher than one. This value will increase as

the solution is more optimal, i.e., load curtailment is getting smaller.

2. Allowing transmission line overloading

In this case, GA tries to find a feasible solution with no load curtailment. If this is

not possible, GA tries to find an optimal solution with the line overloading within the

allowed range. The fitness function used to achieve this policy is constructed as follows:
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3. Equal percent load loss for all buses

The objective of this load curtailment philosophy is to find a feasible solution with the

ratio of load curtailed to total installed load for all load buses as nearly equal as possible.

The fitness function needed to achieve this philosophy is constructed as follows:

i. All loads are given triangular membership functions with the same slope.

ii. Calculate the average membership value for all loads.

                                                      
nl

nl

i
L

av

i
∑
== 1

µ
µ                                                            (9.14)

iii. Calculate the deviation of each load membership value from the calculated

average.

|| avLi i
dev µµ −=                                                    (9.15)

iv. Calculate a modified membership value βLi.

ii LiL dev µβ ).1( −=                                                  (9.16)

v. The fitness function is like (9.12) but βLi  is used rather than µLi.

It is possible to modify this policy by dividing system load buses into groups. Load

loss is shared equally with buses in the same group with load curtailed first from groups

with less importance.

E. Producing New GA Generations

Each generation of GA represents a pop_size candidate solutions for the state

evaluation problem. After calculating the fitness value for all individuals in the current

solution, a new generation is evolved. Evolution of a new generation is done through the

application of three GA operators. These operators are selection schema, crossover and

mutation. Probability of crossover Pc and probability of mutation Pm are set at the
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beginning of the GA. There are many versions of each operator. In the proposed

algorithm, best results are obtained using two-point crossover, non-uniform mutation

and top selection operators [17]. The use of non-uniform mutation improves the GA

performance more than any other type of mutation operators. Moreover, these two types

of crossover and mutation operators have the advantage of keeping variables of newly

produced chromosomes within their lower and upper limits. Crossover and mutation are

applied separately to old population producing new chromosomes. Selection operation is

then applied.

1. Two points crossover operator

For each adjacent pair of chromosomes in the old population, generate a random

number r from [0,1]. If r < Pc , select the given chromosome pair for crossover. At the

end j pairs of chromosomes are eligible to apply crossover to them. Assume the pair X

and Y is subjected to crossover. Generate two different random number �pos1� and

�pos2� in the range [1,nv+nl-1]. Assuming pos1<pos2, the two new chromosome genes

are:

                           xi
\ =  yi   if  pos1≤ i ≤ pos2  and  xi

\ = xi   otherwise.                      (9.17)

                               yi
\ =  xi   if  pos1≤ i ≤ pos2  and  yi

\ =  yi  otherwise.                     (9.18)

2. Non uniform mutation

For each gene in each chromosome in the old population, pick a random number

between 0 and 1. If this number is less than or equal to mutation probability then this

gene is eligible for mutation. For a given parent X, if the element xk of it is selected for

mutation, the resulting offspring X` is:

X` = [x1, x2, �������� kx′  �������xn], where kx′  is randomly

selected from two possible choices:

),( k
u
kkk xxtxx −∆+=′  or                                                   (9.19)
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),( k
Lkkk xxtxx −∆−=′                                                   (9.20)

where U
Kx  and L

Kx  are the upper and lower bounds for Xk.

The function ∆(t,n) returns a value in the range [0 , n ] such that the value of  ∆(t,n)

approaches to 0 as t increases.
b

T

t
rnnt 






 −=∆ 1..),(                                                (9.21)

where t is the current generation number, T is the maximum generations number, r is a

random number in the range [0,1] and b is a parameter determining the degree of non

uniformity. A typical value of b is 2 or 3.

3. Top selection

 Before applying selection operator, old and new chromosomes fitness values are

calculated. Assuming that population size equals �pop_size� and the number of offspring

produced after applying the previously mentioned crossover and mutation operators is

�child_size�. Assuming the optimization problem is a maximization problem, top

selection means that the new generation consists of the highest fitness value

chromosomes. Hence new generation consists from the best pop_size chromosomes

chosen from the previous pop_size parents and child_size children.

IV. The Proposed Algorithm

The steps for implementation are summarized as follows:

1.Choose the type of selection, crossover and mutation for GA. Choose the values

of population size, crossover probability, mutation probability and maximum number of

generations for the algorithm to stop.

2.Construct the system susceptance matrix B with all transmission lines in the up

state.

3. Choose the appropriate fuzzy membership functions for loads, slack bus real
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power, line flows and optimality.

4. Construct GA fitness function according to the load curtailment philosophy

selected.

5. The GAGFC module is called to evaluate the current sampled state.

6. Modify the B matrix according to which lines  are in the down state for the

current state to be evaluated. Calculate the inverse of the resultant matrix.

7. For each chromosome in the initial population, a random real number is chosen

for each chromosome gene. For genes representing power generation choose a random

value for PGi ∈ [PGimin , PGimax ], where PGimax is equal to the sum of power of all

generators in the up state installed at bus i. For each gene representing load value,

choose a random value for Li  ∈ [Limax , Limin ].

8. Each chromosome represents a solution for state evaluation. Each chromosome

in the current population is evaluated as described in next steps.

9.  Find the voltage angles using (9.22) for all buses except the slack bus whose

angle θ1 equals zero and is taken as a reference for other angles.

).(1 LPGB −= −θ                                                          (9.22)

The inverse of the B matrix is calculated once for the sampled state, i.e., there is no need

to calculate it for each chromosome.

10. Calculate the real power flows in each transmission line.

11.Calculate membership values for each load, slack bus power, flow in each

transmission line and optimality.

 12. Calculate the fitness value for the current chromosome using the assigned

fitness function.

13. Repeat steps 9 to 12 for all chromosomes in the current population

14. Stop the algorithm if the stopping criterion has been met, otherwise, proceed to

evolve a new generation. Repeat steps 9 to 13 for the new population.

15. Return a success flag if there is no load curtailment, otherwise, return a failure

flag with the amount of load curtailed at each load bus.
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V. Assessment of Composite System Adequacy Indices

Annualized adequacy indices for the whole system and for each load bus are

calculated using the data saved in the state array, as explained in chapter IV, after

evaluating each sampled state using GAGFC.   Let the total number of saved failure

states be �nf�, then the adequacy indices for the whole system are calculated as follows:

LOLP (Loss of Load Probability) =  ∑
=

nf

j
jPS

1
                                    (9.23)

LOLF (Loss of Load Frequency) =  ∑
=

nf

j
jFS

1
                                     (9.24)

EPNS(Expected Power Not Supplied) = ∑
=

nf

j
jEPNS

1
                          (9.25)

EENS(Expected Energy Not Supplied) = EPNS . 8760                     (9.26)

where PSj , FSj and EPNSj   are failure probability , state contribution to system failure

frequency and expected power not supplied for state j.

The same set of indices can be calculated for each load bus considering only

failure states resulting in load curtailment at this bus and ignoring all other states.

VI. Case Study

The proposed algorithm has been implemented through C++ programming

language.   The proposed method has been tested on the RBTS test system. States with

probability less than 1e-6 are ignored. Total number of saved states in the state array is

500. The input parameters of the GAGFC are taken as follows: pop_size= 50, Pc=0.7,

and Pm=0.3. The stopping criterion used is total number of GA generations equal to 300.

Three case studies are given depending on the load curtailment philosophy.

Annualized bus indices obtained using the fitness function given in (9.12) are given in

Table XXXI.  For transmission line overloading of 10% allowed through the use of

fitness function (9.13), the obtained indices are shown in Table XXXI.
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Table XXXI. Annualized Adequacy Indices Comparison between Dual Simplex Method
and GAGFC

Adequacy
Indices

Dual Simplex
Method

GAGFC
no overload

GAGFC
with 10 % overload

LOLP 0.0096104 0.0096104 0.0093561
EENS (MWH/Yr) 1019.75 1019.29 1005.09
LOLF (occ./Yr) 3.9824 3.9824 3.7099
no. of identified

failure states
224 224 209

These results are obtained assuming that GAGFC stops if it finds an optimal

solution, i.e., line flow and slack bus constraints are satisfied and load curtailment equals

the amount of available generation deficiency to supply system maximum load.   This

means an optimal solution is reached and there is no need for GA to continue. When this

strategy is used there will be no control over the load curtailment methodology used on

each bus. It should be used when only system indices are needed.

The next case study is the application of equal percentage load shedding policy

explained previously. Different load point and system indices are given in Table XXXII.
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Table XXXII. Annualized Adequacy Indices Using Equal Percentage Load Shedding
Policy

Adequacy
Indices

LOLP EENS
(MWH/YR)

Percentage of curtailed to
maximum annual required

energy

LOLF

Bus#2 0.0084814 90.71 0.052% 2.9989161
Bus#3 0.0084930 422.22 0.057% 3.0139949
Bus #4 0.0084930 183.51 0.052% 3.0139949
Bus#5 0.0084912 86.79 0.050% 3.0145671
Bus#6 0.0096104 283.51 0.162% 3.9824173
System 0.0096104 1066.74 0.066% 3.9824173

It can be seen from Table XXXII that all load points with the exception of number

6 have approximately the same expected annual curtailed energy expressed as percent of

annual maximum required energy. This means GAGFC was able to find a solution with

equal load loss sharing policy. Load point 6 has the same LOLP as of the system. This

means in all sampled failure states there was load curtailment associated with bus 6.  Its

LOLP is higher than other buses because it suffers from total isolation from the system

in some sampled failure states. GAGFC was able to find optimal solution with load

curtailment proportional to the installed load at each load bus except the case when bus 6

is subject to isolation from the system, i.e., its load is totally lost.

VII.  Advantages and Disadvantages

The main disadvantage of the proposed method in comparison with conventional

linear programming solver is the computational effort. For the case study, the

computational effort for GAGFC was approximately double that of dual simplex

method. Advantages can be summarized as follows:

1.This method has the ability of implementing more sophisticated load curtailment

philosophies. Many other load curtailment polices can be implemented through GA
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fitness function.

2.Conventional methods divide the solution space into two crisp areas, which are

feasible and unfeasible. GAGFC through its use of the fuzzy constraints divides the

solution space into three areas: feasible, semi-feasible and unfeasible. This

representation for system constraints is more practical in system representation.

3.Consider the case of allowing a small percentage of transmission line over

loading. GAGFC searches for optimal solution with no overloading or with least amount

for overloading because the fitness function values decrease with the increase in over

loading as the overload membership function decreases. In case of conventional methods

allowing a percentage of overload means that any optimal solution within this region is a

feasible solution, hence solutions with over load can have the same objective function

value as solution with no overloading.

4. The proposed techniques can be extended with some modification to evaluate

sampled states based on ac load flow equations instead of the linearized model.

VIII. Conclusions

This chapter has presented a novel method for state evaluation in composite power

systems reliability assessment. The proposed method uses GA to evaluate sampled

states. System constraints and load values are represented by fuzzy membership

functions. The GA fitness function is constructed as a combination from the fuzzy

membership values. Different types of GA fitness function can be used to implement

different load curtailment policies.  GA through its fitness function guided by the fuzzy

membership functions is able to find solution satisfying required load curtailment policy.

Results have shown the success of the proposed method to find reliability indices and the

effect of different load curtailment polices on system indices. Advantages of the

proposed method over other traditional methods have also been described.
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CHAPTER X

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

I. Summary

Reliability studies play an important role in ensuring the quality of power delivery

to customers. Developing more efficient and intelligent power system reliability

assessment techniques plays a key role in improving reliability studies. This dissertation

has presented innovative methods based on genetic algorithms (GAs) for reliability

assessment of power systems.  The GA has been introduced as a state sampling tool for

the first time in power system reliability assessment literature.

The first part of this dissertation has presented an innovative method for the

assessment of generation system reliability. The proposed method is based on a modified

version of the simple genetic algorithm (MSGA). In this method, GA is used not for its

traditional objective of optimization but as a search tool to truncate the probability state

space and to track the most probable failure states. GA stores system states, in which

there is generation deficiency to supply system maximum load, in a state array.  The

given load pattern is then convoluted with the state array to obtain adequacy indices.

State array is also used to obtain useful information about the contribution of different

states and generation unit combinations to the probability of system failure.

In the second part of the dissertation, a GA based method for state sampling of

composite generation-transmission power systems is introduced. Binary encoded GA is

used as a state sampling tool for the composite power system network states. Populations

of GA generations are constructed from  chromosomes, each chromosome representing a

network state, i.e., the states of generation units and transmission lines. A linearized

optimization load flow model is used for evaluation of sampled states. The model takes

into consideration importance of load in calculating load curtailment at different buses in

order to obtain a unique solution for each state.
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The preceding method has been extended to evaluate adequacy indices of

composite power systems while considering chronological load at buses. Hourly load is

represented by cluster load vectors using the k-means clustering technique. Two

different approaches have been developed. In the first approach, GA samples failure

states for each load level separately. Thus adequacy indices are calculated for each load

level and then combined to obtain the annual adequacy indices. In the second approach,

GA samples failure states only with load buses assigned the maximum cluster load

vector. Failure states are then reevaluated with lower cluster load vectors until a success

state is obtained or all cluster load levels have been evaluated.

The developed GA based method  is used for the assessment of annual frequency

and duration indices of composite systems. Transition rates between the load states are

calculated. The conditional probability based method is used to calculate the frequency

of sampled failure states using different component transition rates.

The developed GA based method is also used for evaluating reliability worth

indices of composite power systems. An optimization model based on linearized load

flow  is used for the evaluation of sampled states. Two different objectives are used in

state evaluation. The first objective is to minimize load curtailment considering load

category and load bus relative importance. The second objective is to minimize load

interruption cost. Instead of using the raw interruption cost associated with failure state

mean duration time, random sampling is used to calculate mean interruption cost

associated with each failure state.

The developed GA approach is generalized to recognize multi-state components

such as generation units with derated states. It also considers common mode failure for

transmission lines. Each two-state component is represented by one gene. Meanwhile,

every multi-state component is represented by two or more genes, e.g., two genes are

able to represent up to four-state component.

Case studies on the IEEE-RBTS test system were presented.   It has been shown

that the developed methods have several advantages over other conventional methods

such as Monte Carlo simulation. These advantages can be summed up as follows:
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1. The superiority of the developed methods over other conventional methods

comes from the ability of GA to trace failure states in an intelligent, controlled and

prespecified manner through the selection of a suitable fitness function.

2. Through its fitness function, GA can be guided to acquire certain part of the

state space. This can be done by giving more credit to the states belonging to the part of

the state space that is of interest.

3. State evaluation is the most time consuming part in composite system reliability

assessment. The same sampled states are evaluated more than once when Monte Carlo

simulation is used. This is not the case with the developed methods where sampled states

are evaluated once.

4. The computational effort of the developed algorithms is only 10% to 20% of the

computational effort when using Monte Carlo simulation to calculate annual adequacy

indices for composite power systems.

5. In case of very reliable systems, Monte Carlo simulation needs much more time

to converge, which is not the case with GA as it depends on fitness value comparison.

6. Parallel operation of GA sampling can be easily applied  providing

computational time reduction.

7. The obtained state array, after the GA states sampling stops, can be analyzed to

acquire valuable information about the sensitivity of system failure to different

components in the power system under study.

The last part of the dissertation has presented a new method for composite system

state evaluation using real number encoded GA. The objective of GA is to minimize load

curtailment for each sampled state.  Minimization is based on the dc load flow model.

System constraints are represented by fuzzy membership functions.  Membership value

indicates the degree of satisfaction of each constraint for an individual in a GA

population. The GA fitness function is a combination of these membership values. The

proposed method has the advantage of allowing sophisticated load curtailment strategies,

which lead to more realistic load point indices. Application to a simple test system using

different load curtailment philosophies has been introduced.
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II. Suggestions for Future Work

1. The developed algorithms for composite power system reliability assessment

can be enhanced for more efficient applications to large power systems. Some of these

enhancements can be:

i. Representing generation units at each PV bus by using the capacity outage

table instead of representing each generation unit separately. This will result in

representing a system state by less number of genes. This could significantly

decreases the computational effort.

ii. The use of parallel computations with GA sampling. This can be achieved by

dividing the state space into several non-overlapping partitions construction the

state array for each part separately.

iii. When the chromosome length is larger than 50 genes, it will not be practical to

use only one decimal number equivalent to the state binary number. A better

approach is dividing the chromosome into two or more parts and an equivalent

decimal number is calculated for each part. In this case, each state is identified

by more than one decimal number.

2. The use of ac load flow equations instead of using dc load flow equations in the

state evaluation module. This requires much more computational effort but will result in

more realistic reliability indices for certain applications. Voltage level and reactive

power will be considered when judging if a sampled state represents a failure or a

success state.

3. Developing new methods that consider the effect of deregulation on power

systems reliability. This  could be achieved as follows:

i. Developing more sophisticated models for power system components. These

models should take into consideration operation constraints under the

deregulation environment.

ii. Developing state evaluation models that take into consideration power

transaction contracts between different entities in the restructured power
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market.

4. Enhancing the GA sampling process. This can be done through:

i. The use of different kinds of fitness functions for the GA sampling. A better

fitness function will enhance the search process. It is also possible to use

fitness functions that give a snap shot of the state space, e.g., the effect of

certain  group of transmission lines on composite system reliability.

ii. There are many other GA operators that can be used other than the one used in

this dissertation. It is possible that some of them could accomplish better

search.

iii. The use of adaptive values for the probability of mutation and the probability

of crossover

6. Other potential extensions for the GAGFC methodology are:

i.  Implementing other load curtailment techniques using the GAGFC. It can

also be modified to represent the state evaluation as a multi-objective

optimization problem. One possible policy is to minimize both load

curtailment and the interruption cost in the same time.

ii. Applying the GAGFS to solve ac equations based state evaluation models.
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APPENDIX  A

THE RBTS TEST SYSTEM DATA

The RBTS system has been developed by the power system research group at the

University of Saskatchewan [26].   The basic RBTS system data necessary for adequacy

evaluation of the composite generation and transmission system is given in this

appendix.

The single line diagram of the RBTS test system is shown in Fig. 7. The system

has 2 generator (PV) buses, 4 load (PQ) buses, 9 transmission lines and 11 generating

units. The minimum and the maximum ratings of the generating units are 5MW and

40MW respectively. The voltage level of the transmission system is 230 kV and the

voltage limits for the system buses are assumed to be 1.05 p.u. and 0.97 p.u. The system

peak load is 185 MW and the total installed generating capacity is 240 MW.   

The annual peak load for the system is 185 MW. The load at each bus will be

considered fixed at its maximum value. The peak load at each bus is as given in Table

XXXIII. It has been assumed that the power factor at each bus is unity.

The generating units rating and reliability data for the RBTS are given in Table

XXXIV.

The transmission network consists of 6 buses and 9 transmission lines. The

transmission voltage level is 230 kV. Table XXXV gives the basic transmission lines

reliability data. The permanent outage rate of a given transmission line is obtained using

a value of 0.02 outages per year per kilometer. The current rating is assumed on 100

MVA and 230 kV base.
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Table XXXIII. RBTS System Load Data

Bus number Maximum load (MW) User type
1 0 -----
2 20 Small users
3 85 Large users &small users
4 40 Small users
5 20 Small users
6 20 Small users

Table XXXIV. RBTS Generating System Data

Unit size
(MW)

Type No. of units Installed at
bus no.

Forced Outage
Rate

5 Hydro 2 2 0.01
10 Thermal 1 1 0.02
20 Hydro 4 2 0.015
20 Thermal 1 1 0.025
40 Hydro 1 1 0.02
40 Thermal 2 2 0.03
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Table XXXV. Transmission Lines Lengths and Outage Data

BusesLine
no. From To

Length
(km)

Permanent
outage rate
λ(per year)

Outage
duration
(hours)

Current
rating (p.u.)

1 1 3 75 1.5 10 0.85
2 2 4 250 5 10 0.71
3 1 2 200 4 10 0.71
4 3 4 50 1 10 0.71
5 3 5 50 1 10 0.71
6 1 3 75 1.5 10 0.85
7 2 4 250 5 10 0.71
8 4 5 50 1 10 0.71
9 5 6 50 1 10 0.71
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