3,852 research outputs found

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely

    Cylindrical Graph Construction (definition and basic properties)

    Full text link
    In this article we introduce the {\it cylindrical construction} for graphs and investigate its basic properties. We state a main result claiming a weak tensor-like duality for this construction. Details of our motivations and applications of the construction will appear elsewhere

    Taut distance-regular graphs and the subconstituent algebra

    Get PDF
    We consider a bipartite distance-regular graph GG with diameter DD at least 4 and valency kk at least 3. We obtain upper and lower bounds for the local eigenvalues of GG in terms of the intersection numbers of GG and the eigenvalues of GG. Fix a vertex of GG and let TT denote the corresponding subconstituent algebra. We give a detailed description of those thin irreducible TT-modules that have endpoint 2 and dimension D−3D-3. In an earlier paper the first author defined what it means for GG to be taut. We obtain three characterizations of the taut condition, each of which involves the local eigenvalues or the thin irreducible TT-modules mentioned above.Comment: 29 page

    Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement

    Get PDF
    We report new results and generalizations of our work on unextendible product bases (UPB), uncompletable product bases and bound entanglement. We present a new construction for bound entangled states based on product bases which are only completable in a locally extended Hilbert space. We introduce a very useful representation of a product basis, an orthogonality graph. Using this representation we give a complete characterization of unextendible product bases for two qutrits. We present several generalizations of UPBs to arbitrary high dimensions and multipartite systems. We present a sufficient condition for sets of orthogonal product states to be distinguishable by separable superoperators. We prove that bound entangled states cannot help increase the distillable entanglement of a state beyond its regularized entanglement of formation assisted by bound entanglement.Comment: 24 pages RevTex, 15 figures; appendix removed, several small corrections, to appear in Comm. Math. Phy

    Biconed graphs, edge-rooted forests, and h-vectors of matroid complexes

    Full text link
    A well-known conjecture of Richard Stanley posits that the hh-vector of the independence complex of a matroid is a pure O{\mathcal O}-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified `coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs. We study the hh-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of `edge-rooted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the M\"obius coinvariant (the last nonzero entry of the hh-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially edge-rooted forests gives rise to a pure multicomplex whose face count recovers the hh-vector, establishing Stanley's conjecture for this class of matroids.Comment: 15 pages, 3 figures; V2: added omitted author to metadat

    Dimers, webs, and positroids

    Full text link
    We study the dimer model for a planar bipartite graph N embedded in a disk, with boundary vertices on the boundary of the disk. Counting dimer configurations with specified boundary conditions gives a point in the totally nonnegative Grassmannian. Considering pairing probabilities for the double-dimer model gives rise to Grassmann analogues of Rhoades and Skandera's Temperley-Lieb immanants. The same problem for the (probably novel) triple-dimer model gives rise to the combinatorics of Kuperberg's webs and Grassmann analogues of Pylyavskyy's web immanants. This draws a connection between the square move of plabic graphs (or urban renewal of planar bipartite graphs), and Kuperberg's square reduction of webs. Our results also suggest that canonical-like bases might be applied to the dimer model. We furthermore show that these functions on the Grassmannian are compatible with restriction to positroid varieties. Namely, our construction gives bases for the degree two and degree three components of the homogeneous coordinate ring of a positroid variety that are compatible with the cyclic group action.Comment: 25 page
    • 

    corecore